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The paper deals with an analysis of the dynamic response of the isotropic conical shell
subjected to rectangular or triangular pulse loading. This problem was solved with
the Bubnov–Galerkin analytical–numerical method, using a two–parameter function of
deflection. In the equations of dynamic equilibrium, an orthotropic material was taken
into consideration. Moreover, pressure loading and compression force were included.
The solution results were compared with the finite element method, using ANSYS 11.
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1. Introduction

Conical shells as typical thin–walled structures have many applications in building
industry as pressure vessels, roof steel structures, etc. An analysis was conducted
for conical shells with low capacity.

In the world literature, the dynamic buckling phenomenon is widely described.
Many articles were written in the 60’s and the 70’s of the 20th century. In [3],
[4], a vibration analysis was conducted. On the basis of [6], dynamic equilibrium
equations were extended to pressure loading.

In this paper, an analysis of the dynamic response to pulse loading was con-
ducted, taking into consideration an influence of pulse amplitude on the highest
value of deflection.

As known ([6], [7]), deflection appears before buckling of the conical shell. It
takes place for static and dynamic loading. Despite it, to allow dynamic buckling,
initial imperfection was assumed.
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Figure 1 Conical shell – geometric dimensions, a type of loading and displacements
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Figure 2 Types of pulse loading: a) triangular, b) rectangular

2. Describtion of the dynamic bucling phenomenon

As mentioned above, a truncated conical shell (Fig. 1) of the following dimensions:
H = 40 mm, R = 28 mm, r = 5 mm, h = 0.5 mm was considered. It was assumed
that the shell under analysis was made of steel with the following elastic properties:
Young modulus E = 2 · 105 MPa, Poisson coefficient ν = 0.3. In the analysis, two
shapes of pulse loading were used (Fig. 2); Tp – pulse duration corresponding to
the free vibration period, qa – amplitude.

3. Analytical–numerical method

In the conical coordinate system s, ϕ, t (Fig. 1), the equilibrium equation obtained
from Hamilton’s principle can be written as follows [7]:
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where:
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N1, N2 – membrane forces along the loop and hoop directions;
T12 – membrane shear force;
M1, M2 – bending moments;
M12 – torsion moment;
q – pressure;
ρ– density,
R2 = s/tan(α1) – curvature radius of the conical shell.
Equation (2) includes curvatures and torsion of the middle surface defined as:
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Membrane forces were expressed using the Airy stress function.
Membrane strains of the middle surface according to [6] were written as:
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In order to obtain the Airy function, the equation of continuum of the middle surface
was used:
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Deflection was assumed as a two–parameter function, taking into account deflection
in the range of the pre–buckling state [6], [7]:

w(s, ϕ, t) = f1(t) sin(ms) sin(nϕ) + f2(t) sin2(ms) + w0(s, t) (5)

where:
m – number of waves along the loop direction,
n – number of waves along the hoop direction.
Using formula (3), deflection in the pre–buckling range was obtained:
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Then, the Airy function was obtained, but in this paper the expression is omitted.
Boundary conditions (B.C.) were formulated for a simply supported conical shell

at the top and the bottom:

w(s0, ϕ, t) = 0 Ms(s1, ϕ, t) = 0 (7)

Assuming the initial shape imperfection and taking into account (5), initial condi-
tions for deflection were assumed as follows:

w(s, ϕ, 0) = f10 sin(ms) sin(nϕ) + f20 sin2(ms) + w0(s, 0)
(8)

ẇ(s, ϕ, 0) = 0

and knowing that w0(s, 0) = 0, f20 = 0, the first of two equations (8) can be written
as:

w(s, ϕ, 0) = f10 sin(ms) sin(nϕ) (9)

Equilibrium equation (1) was solved with an analytical–numerical method – the
so–called Bubnov–Galerkin method [5].

Description of algorithms and methods to solve equilibrium equations
In the analysis of the conical shell response, the ANSYS software (version 11)

was used. This program performs computations with the finite element method.
Discretization of the shell was performed with a 4-node shell element (Fig. 3).
This type of the finite element has six degrees of freedom (3 displacements and 3
rotations). A numerical model includes boundary conditions close to (7), expressed
in the conical coordinate system.

a) b)

Figure 3 Numerical model of the analysed shell: a) after the discretization, b) type of the finite
element

Computations were conducted in two stages. First, frequency of free vibrations and
corresponding modes of free vibrations were obtained. Then, a nonlinear analysis
was performed using appropriate modes to perturbate the finite element grid. In
this analysis equilibrium equation (10)

{P} = [M] · {ü}+ [K] · {u} (10)

is solved, neglecting the dumping effect. In the equation, [M] means a mass matrix
of the structure.
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After substituting derivations of displacements ü for difference quotients of dis-
placements u, a system of nonlinear algebraic equations is obtained for every time
step, taking into consideration the Newton’s force of inertia [M] · {ü}. This ap-
proach allows us to use algorithms in the static analysis. Operation of the time
integration in the ANSYS code is performed with the Newmark method, but to
solve the equations in next steps, the Newton–Raphson algorithm is employed.

4. Results of computations

The results from two methods described in sections 2 were compared to each other
and with the results from the literature survey. Upper and lower static critical loads
were computed and compared. Then, frequencies of free vibrations were obtained
(Tab. 1).

Table 1 Critical forces and frequencies of free vibrations

Type of method qkr [MPa] nkr [-] T0 [ms] n [-]
A-N 13 6 0.45 3
MES 14 6 0.11

0.41∗
3

∗) boundary conditions in the Cartesian coordinate system,

n - number of waves along the circumferential direction

The analysis was conducted for the same duration, independently of the type of
pulse loading. In the paper, curves of the response from the analytical–numerical
(A–N) and finite element method (FEM) are shown below. The parameter p means
an amplitude of the pulse qa. The duration Tp equals 0.45 ms. In Fig. 4 curves of
deflections vs. time are shown. The amplitude of pressure was assumed to be equal
to 10 MPa. Initial imperfections were neglected. The highest values of deflection
are almost identical and appear at the same time. Oscillations shown in the curves
are characteristic of vibrations of the middle surface.

Initial imperfections were taken into consideration in the next part of the anal-
ysis. In Fig. 5, curves of deflection vs. time, corresponding to this type of analysis,
are shown. Initial imperfections were assumed to be equal to 10 % of the shell
thickness.

While comparing curves from Figs 4 and 5, it can be noticed that increments
of deflection (a triangular type of pulse) have maximal values of 0.1 mm. In Fig.
6 relative deflection (with respect to thickness) curves vs. the relative amplitude
of pressure (to critical static load) are shown. Small differences between relative
deflections suggest a neglected influence of initial imperfections.

In Fig. 7 wmax/h curves versus p/pkr are shown for a rectangular shape of
pulse. In this case of loading, initial imperfections have a significant influence
on the behaviour of the shell. When initial imperfections are absent, differences
between the results are small. Differences are significant when initial imperfections
are assumed. The curve from the FEM goes up rapidly for p/pcrit=0.8.
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Figure 4 Curves of deflection vs. time for the amplitude of pressure 10 MPa, without initial
deflection; duration equals 0.45 ms
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Figure 5 Curves of deflection vs. time for the amplitude of pressure 10 MPa, with initial deflection;
duration equals 0.45 ms
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Figure 6 Curves wmax/h = f(p/pkr) without and with initial deflection – a triangular shape of
pulse; duration equals 0.45 ms
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Figure 7 Curves wmax/h = f(p/pkr) without and with initial deflection – a rectangular shape of
pulse; duration equals 0.45 ms
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5. Conclusions

The results shown in the paper point to an influence of the initial shape imper-
fections on the behaviour of conical shells, depending on the pulse loading shape,
because energy (connected with its transfer to the structure) of the rectangular
pulse is different (higher) than of the triangular one. Moreover, the results suggest
that the analytical–numerical method should be modified with respect to a function
of deflection (5). It is important to specify boundary conditions in all numerical
models.

References

[1] Budiansky, B. and Hutchinson, J.W.: Dynamic buckling of imperfection–
sensitive structures, Proceed. XIth Internat. Contr. Applied Mech., Berlin, 636–651,
1964.

[2] Budiansky, B. and Roth, R.S.: Axisymmetric dynamic buckling of clamped shal-
low spherical shell, Collected papers on instability of shell structures, NASA TN D–
1510, 591–600, 1962.

[3] Gupta, A.P.: Axisymmetic vibrations of conical sandwich shells, University of
Roorke, Roorke, 1978.

[4] Hassan, A.I., Maalawi, K.Y. and Negm, H.M.: Frequency optimization of coni-
cal shells under mass equality constraint, J. of App. Sciences Research, 2(11),821–829,
2006.

[5] Kowal–Michalska, K. (et al.): Stateczność dynamiczna kompozytowych kon-
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