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A general formulation that can be used for the stability analysis of axisymmetric circular
plates with piezoelectric (PZT) is presented in the paper. Demonstrated approach is
based on the Rayleigh–Ritz method that is applied for functional of electric energy
enthalpy. Numerical examples deal with compressed circular plates. The computations
are conducted both for Love–Kirchhoff and first order shear deformation plate theory
(SDT). Destabilization effects of electric voltages and piezoelectric widths are studied.
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1. Introduction

In recent years, there has been an increasing interest in the development of light-
weight smart or intelligent structures for engineering applications to control e.g.
deformations. Smart structures (e.g., piezoelectric coupled plates) may be used
as sensors or/and actuators in various applications, including vibration control,
acoustic noise suppression, active damping and so on.

Mindlin [1, 2] initiated the study based on power series expansions of the me-
chanical displacements and the electric potential along the thickness of the plate and
formulated the variational principle. He proposed the plate theory [3, 4] which in-
cluded the effects of rotatory inertia and shear deformation. The first contributions
to the field concerning vibration of single–layer piezoelectric plates are summarized
in the work written by Tiersten [5].

The analysis of circular plates with piezoelectric layers deals mainly with the
evaluation of eigenfrequencies (free vibrations) that is almost similar to the buckling
analysis. Haojianga et al. [6] developed an exact solution for axisymmetric vibra-
tion of piezoelectric circular plates under certain types of boundary conditions.
To investigate the free vibration of piezoelectric laminate circular plates, Heyliger
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and Ramirez [7] combined approximations of one–dimensional finite elements in the
thickness direction and analytic functions in the plane within the context of the
Ritz method.

Using classical theory of plates and the theory of electric potential Zhanga et al.
[8] investigated the transient bending characteristics of a thin, piezoelectric circular
plate under axisymmetric, mechanical loading, electrically grounded over the whole
surface and built–in or simply supported at the edge. The space–dependent terms
of the transient solution were expressed in terms of a single, elementary Bessel
function, whose analytic behaviour and numerical evaluation were readily available,
and the explicit time history of the solution was obtained by precise inverse Laplace
transformation.

Ebrahimi, Abbas Rastgo [9] presented analytical investigation of the free vi-
bration behavior of thin circular functionally graded plates integrated with two
uniformly distributed actuator layers made of piezoelectric material based on the
classical plate theory.

One-term space mode approximate analytical solutions for geometrically non-
linear response of elastic circular thin plates have been shown in the literature to
yield quite accurate results for static, transient, buckling, postbuckling and nonlin-
ear vibration response. Tzou et al. [10] presented static and dynamic control of
a circular plate with geometric nonlinearity. Tzou and Zhou [11] provided a poly-
nomial series solution for nonlinear static and dynamic response of circular plates
under thermoelectromechanical excitations. Kapuria and Dumir [12] presented an
approximate analytical one–term Galerkin solution for the problem of nonlinear
deflection, thermal buckling and natural frequencies of a three–layer thin circular
plate made of an isotropic elastic core with piezoelectric layers bonded to its faces.
The analysis was restricted to axisymmetric moderately large deflection of the plate
subjected to a thermal load, radial edge load or edge displacement and actuated
by applying an electric potential across a piezoelectric layer. The rotational and
inplane inertia and the shear deformation were neglected in the Von Karman type
classical thin plate theory used in the analysis.

Both free vibration and buckling analysis were mainly based on the use of the
classical plate theory (the Love–Kirchhoff approximation). First–order shear defor-
mation plate theory (SDT) of Mindlin [3], including the effects of shear deformation
and rotary inertia, was a natural extension of the classical plate theory in order to
analyze vibration behavior of moderately thick plates. Liu et al. [13] applied a
first–order shear deformation plate theory, which considered transverse shear de-
formation and rotary inertia in some way, to investigate vibration of piezoelectric
coupled moderately thick circular plates.

Based on three–dimensional elastic theory of piezoelectric materials, the ax-
isymmetric state space for deformation of piezoelectric laminated circular plates
was derived by Haojianga et al. [6]. Solutions for transversely isotropic circular
laminates were obtained.

Different higher–order shear deformation plate theories (HSDT) were also pro-
posed, including the second-order shear deformation formulation of Whitney and
Sun [14] and the third–order shear deformation theory of Lo et al. [15] with 11
unknowns; Reddy [16] with five unknowns and Hanna and Leissa [17] with four un-
knowns. The HSDT does not need to use any shear correction coefficient since its
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third–order displacement field assumption satisfies the zero shear stress condition
at the free surfaces [18]. Therefore, the HSDT approximating radial and circum-
ferential displacements up to the cubic order produces better in–plane responses
when compared with the SDT. In return, their governing equations are much more
complicated than those of the SDT. There are few works on the free vibration of
isotropic homogeneous circular or annular plates on the basis of the HSDT. Chen
and Hwang [19] utilized the average stress and Galerkin methods to obtain natural
frequencies of axisymmetric initially stressed circular and annular plates using the
HSDT.

3–D vibration analysis of isotropic homogeneous plates having different shapes
(e.g., circular and annular plates) and different boundary conditions were widely
carried out via numerical approaches, including the finite element method [20] and
the Ritz method.

In the present paper our attention is focused on the formulation of stability
analysis (it may be treated as similar to free vibration problem) of circular axisym-
metric isotropic plates with piezoelectric layers bounded symmetrically on both
sides of the plates. The length of the piezoelectric layer is variable. The presented
results and formulation is based on the Rayleigh–Ritz method and approximated
form of deflections. The fundamental relations are introduced for the first order
shear deformation plate theory and the classical plate theory.

2. The generalized energy functional

The Rayleigh–Ritz method is commonly used for the computation of approximate
solutions of operator eigenvalue equations (buckling loads or natural frequencies)
and partial differential equations. The method is based on a linear expansion of the
solution and determines the expansion coefficients by a variational procedure, which
is why the method is also known as linear variation method. Usually, the eigenvalue
problem can be found by variations of the Lagrange (displacement) functional (or
Hamilton for free vibration). In the case of piezoelectric materials classical energy
density is extended through introduction of density of electric enthalpy (see e.g.
Mindlin [21]) which takes into the consideration the electric field. In the global
coordinate system x, y, z the density of electric enthalpy (3-D formulation) is defined
in the following way:

Πint =
1
2

[σ] [ε] (1)

where [σ] and [ε] are quantities understand in the broader sense than classical (i.e.
stress and strain, respectively) and are expressed in the so–called generalized form,
i.e.

[σ] =
[

[σ̄]
[D]

]
= [C] [ε] =

[ [
C̄

]
[−e]

[e]T [µ]

] [
[ε̄]
[E]

]
(2)

Symbols with the dash have traditional mechanical interpretation, i.e. stress, stiff-
ness matrix and strain. [D] denotes the displacement vector equivalent to electro-
static induction vector generated by the electric field [E] – each of these quantities
have three components. [e] matrix (6x3) defines the permittivity coefficients of the
medium. [µ] (3x3 dimension) means dielectric conductivity. The electric field is usu-
ally defined by electric potential gradient Φel ([E]=-grad Φel) that satisfies Maxwell
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law rot [E]=0. The energy density expressed by formula (1) is supplemented by the
energy of body forces and surface forces.

In view of solving variational problems it is necessary to consider independently
two cases:

• problem of mechanical excitation measurement: in this case displacement field
and electric field vector are independent variables – six components so–called
sensor problem;

• problem of electric activation: searching for components of displacement field
and electric input function (electric potential) are treated in the analogous
manner as thermal input function (so–called actuator problem).

We observe that in the problem of electric activation the density of enthalpy (1) is
the functional having four independent variables: three components of displacement
vector and the electric potential Φel. Therefore, in the case of transformation from
variational form to differential equations we obtain classical equations of equilibrium
for 3-D body and the Maxwell equations in the form div [D]=0 and the relation [E]=-
grad Φel which are supplemented by physical relation (2) and boundary conditions.

In this work we intend to express the relationship between the electric potential
and the displacement vector in differential form. Next knowing distribution of
potential we can insert it to the relation for electric enthalpy (1) and find value of
critical load from that functional using classical Rayleigh-Ritz approach.

3. Relation between electric potential and displacement field

We assume that the potential of the electric field Φel has the following distribution
in the z direction (see Wang et al. [22]):

Φel =

[
1−

(
2z − tPZT − t

tPZT

)2
]

ϕ (x, y) (3)

where ϕ(x, y) denotes value of potential on mid–surface of piezoelectric layer, whereas
tpzt means the piezoelectric layers thickness, and t is a thickness of the host plate
(Fig. 1.). Using the Maxwell law, for which density of divergence of electrostatic
induction is equal to zero at each point of body [23], one can find

t/2+tP ZT∫

t/2

div [D]dz = 0 (4)

Using the relation (2) and assuming the distribution of the electric potential (3) the
equation (4) can be presented in the explicit form as follows:

t2PZT µ11

12µ33
∆ϕ− ϕ +

e31

µ33

t/2+tP ZT∫

t/2

dz (ε̄xx + ε̄yy) = 0 (5)

It gives the explicit relation between potential and the mechanical strains.
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Figure 1 Geometry of piezoelectric circular plate (cross–section)

4. Stability of circular plate

Assuming the axisymmetry of the problems using the first order shear deformation
theory and von Karman nonlinear geometrical theory the strains can be presented
in the following way:

εr =
du

dr
+

1
2

(
dw

dr

)2

+ z
dψ

dr
εψ =

u

r
+

zψ

r
εrz = ψ +

dw

dr
(6)

where u and w mean displacement components in the radial (r) direction and the
transverse (z) directions, respectively (Fig. 1.), ψ denotes angle of rotation of
the normal to the plate mid–surface. For the classical Love–Kirchhoff theory the
appropriate strains are determined assuming transverse shear strain εrz to be equal
to zero, what allows us to find the unknown variable ψ. In the relation (6) strains
are presented in the 3–D form. In the relation (6) all terms multiplied by the z
coordinate describe the change of curvature, and other terms to membrane strains.

Substituting relation (6) to equation (1), using the relationship (2) and assuming
electrical field as potential field for the plate in the case of axi-symmetrical strain
loaded by compressive radial axial forces N a density of electrical enthalpy (1) takes
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the following form

Π = Πplate + ΠPZT + Πload + Πelect

Πplate =
1
2

R∫

0

{Dplate [(κr + νκθ) κr + (κθ + νκr) κθ]

+kTSGplatetplateε
2
rz

}
rdr

ΠPZT =
1
2

a∫

0

{DPZT [(κr + νκθ)κr + (κθ + νκr)κθ]

−MPZT (κr + κθ) + kTSGPZT tPZT ε2
rz

}
rdr

(7)
MPZT = e31 (t + tPZT /2)Φel

Πload =
1
2

R∫

0

N

(
dw

dr

)2

rdr

Πelect = −1
2

R∫

0

dr

[
µ11

(
∂ϕ

∂r

)2

+ µ33ϕ
2

]

In the above relations D denotes the bending rigidity, G means shear modulus.
Subscripts plate and PZT relate to plate and piezoelectric layers, respectively. kTS

describes transverse shear coefficient and is equal to 5/6 for isotropic structures.
Symbol κ denotes the parameter of change of curvature in the radial direction (r)
and circumferential (θ) directions, respectively – they are defined by equations (6)1,2

as the multipliers of the z variable. Piezoelectric element increases plate stiffness
and produces additional moment MPZT following from coupling between electrical
field and mechanical field.

5. Numerical results

In order to illustrate the piezoelectric effects for plates described with the use of
the Love–Kirchhoff theory a normal deflection is assumed in the following form:

w (r) =
∞∑

m=1

Bmr2m−2
(
r2 −R2

)2
(8)

Taking into a count the first term (m=1) in Eq. (8) substituting it to Eq. (7) an
approximate value of critical force can be found:

NL−K
cr = 16

Dplate + DPZT

R2
(9)

This quantity is higher about 9% than exact value. On the basis of the first order
shear deformation theory the value of critical force is characterized by the following
relation:

NSDT
cr =

NL−K
cr

1 + NL−K
cr / [k2

TS (Gplatet + 2GPZT tPZT )]
(10)
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Now, let us take into account the influence of applied voltage on the value of critical
(buckling) force. In numerical computation it is assumed that material constants
are defined in the following:

• plate: E=200 [GPa], ν=0.3, t = 10 [mm], R =500 [mm],

• PZT : E=132 [GPa], ν=0.3, tPZT = 2 [mm], e31 = -4.1 [C/m2],

µ11 = 7.124 [nF/m], µ33 = 5.841 [nF/m].

Substituting relations (6) to Eq. (5), neglecting displacement u and assuming the
following form of the potential:

ϕ = A1Y1 (r) + A2Y2 (r) (11)

one can find the analytical form of the function ψ(r). Y (r) denotes Bessel function
of the first kind and A are unknown constants. Unknown distribution w(r) is
assumed as power series which maximal index exponent is higher than indexes in
series ψ(r). We have assumed that w(r) and ψ(r) functions satisfy the following
boundary conditions (clamped edges):

ψ(0) = 0 ψ(R) = 0 w(R) = 0 (12)

Finally, using the relations (7), (8) (taking into a count to terms m=1 and m=2)
and (11) we can express the explicit form for buckling loads as follows

Ncr = f(A1, A2, B1, B2) (13)

Using symbolic package Mathematica 7 calculations can be easily performed. In
order to verify convergence the compute from procedure is repeat increasing number
of term in the expression (11).

Depending on voltage sign one can observe stabilizing or destabilizing effects.
In the present work the decrease of buckling force is discussed in details. Results
are presented in Fig. 2 and Fig. 3. For constant voltage equal to 100 [V] one
can observe the reduction critical force with the variation of the piezoelectric width
(Fig. 2).

Destabilizing effect grows with the increase of the width parameter a/R. The
next example (Fig. 3) illustrates the influence of the voltage value on lost of stability.
It is assumed that width parameter a/R is equal to 0.5. It is obvious that the
increase of the voltage affects significantly the value of critical loads.

Both plots (Fig. 2 and Fig. 3) demonstrate the variation of dimensionless
buckling loads and referred to the value given by equation (9). As it may be seen
first order shear deformation theory results in the reduction of the buckling loads
in the comparison with the classical theory. In general the reduction ratio may be
approximated with the relation (10).

The proposed formulation and methodology of analysis can be easily extended
for the stability/free vibration analysis of multilayered composite plates.
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Figure 2 Influence of width of piezoelectric layer on value of critical force (L–K – Love-Kirchhoff
theory, SDT – first order shear deformation theory)

Figure 3 Influence of voltage on value of critical force (L–K – Love–Kirchhoff theory, SDT – first
order shear deformation theory)
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6. Conclusions

An efficient and effective approach to the analysis of stability problems of circu-
lar plates with piezoelectric layers and subjected to compressive radial loads is
presented in the paper. The demonstrated method may be applicable to the in-
vestigations of buckling problems for plates with the use both the Love–Kirchhoff
theory and SDT. The presented study confirms the usually accepted conclusion
that the use of the SDT theory reduces buckling loads in the comparison with the
classical Love–Kirchhoff plate theory. It is worth to note that the external elec-
tric field (piezoelectric actuators) may have stabilizing or destabilizing influence on
compressed plate. The length of piezoelectric actuator strongly affects the values of
buckling loads, one may observe that with the increase of the length of PZT patch
destabilizing effects grows.
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