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In the paper the influence of following factors: initial imperfections, shape and duration
of pulse loading on the dynamic response of plate structures is presented. The effect
of material properties in the plastic range and the estimation of structure capacity to
sustain dynamic pulse loadings based on different dynamic stability criteria is discussed
as well.
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1. Introduction

The problem of dynamic buckling of thin walled structures such as shells and plates
subjected to in–plane pulse loading has been widely investigated starting from six-
ties of previous century [see e.g. works of Simitses [14, 15] and Gryboś [2]]. These
pulse loads may be of various durations and shapes (rectangular, sinusoidal, trian-
gular, trapezoidal, etc.) being approximations of real load courses. Depending on
the so–called ”pulse intensity” different phenomena may occur – impact for pulses of
high amplitudes and durations in range of microseconds or quasi–static behavior if
amplitude is low and duration is twice of period of fundamental natural vibrations.
For pulses of intermediate intensity (amplitudes in range of static buckling load
and durations close to period of fundamental natural vibrations) the phenomenon
of dynamic buckling occurs. It is known that at pulse loads of short duration (in
range of milliseconds) the dynamic structure carrying capacity is larger than static
one. However it should be remembered that for plate structure, in contrary to
the static behavior, the bifurcation dynamic load does not exist. The phenomenon
of dynamic buckling takes place only for initially imperfect structures. Initial im-
perfections’ magnitude in connection with pulse shape and its duration are crucial
parameters in dynamic buckling load estimation.
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Dynamic buckling load is usually determined on the basis of dynamic buckling
criterion that oneself seems to be problematic. Commonly used Budiansky–Roth–
Hutchinson criterion [3] was formulated for structures having limit point or unstable
postbifurcation path. Its application to plate structure behavior, with stable post-
buckling path, is based rather on intuition. Therefore in subject literature one can
find a lot of stability criteria – most of them are based on state of displacements
or state of stress. Some of them formulate conditions for dynamic buckling load
estimation (e.g.Volmir [19], Budiansky–Hutchinson [3], Ari–Gur and Simonetta [1]),
the others aim to determine the dynamic failure load (e.g. Petry and Fahlbusch
[14], Ari–Gur and Simonetta, Weller et al. [18]).

Some degree of uncertainty of all mentioned criteria brought the researches of
new dynamic stability criteria basing on Jacobian matrix eigenvalues analysis (see
Kubiak [10]) or applying phase portraits criterion (see Teter [17]). It should be
noted that both mentioned works deal with dynamic interactive buckling of plated
structures with open cross-sections.

In most publications the considerations are conducted in the elastic range. Usu-
ally the unlimited elasticity is assumed. However it is well known that in static
buckling of plate structures with low ratio width to thickness and larger imper-
fection amplitude some regions become plastic at loadings close to static buckling
load (see KoÃlakowski, Kowal–Michalska [5]). Therefore, to determine static failure
load, it is necessary to take into account the material characteristic. When a load
is applied dynamically the material properties change (e.g. the value yield limit
can be twice static one). In investigations concerning dynamic loading the material
stress-strain curve obtained in static tests has been usually assumed [6], [7], [8], [9],
[14]. Recently, in works of Mania [11], [12] the effect of strain rate on material char-
acteristic has been accounted for in dynamic response of short columns of closed
cross–sections.

The subject of this paper is the analysis of the influence of all mentioned earlier
factors (shape and duration of pulse load, initial geometric imperfection, applied dy-
namic stability criteria, elasto–plastic material properties) on the dynamic response
of rectangular plates and thin–walled columns of closed cross–sections.
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Figure 1 Simply supported plate and thin–walled column (A – cross-section area)
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2. Considered structures and loading

The results of numerical calculations, being the subject under discussion, were re-
ceived for isotropic plates, simply supported at all edges and for isotropic columns
built of rectangular plates (Fig. 1). It was assumed that all plate edges and loaded
edges of a column remain straight and mutually parallel during loading. Considered
structures subject to pulse in–plane compressive load of a shape shown in Fig. 2
and described by the relation:
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Figure 2 Exemplary shapes of pulse loading a) sinusoidal b) rectangular

for 0 ≤ t ≤ Tp P (t) = P0 sin
(

πt

Tp

)
(Fig. 2a) σ(t) = σdyn (Fig. 2b)

(1)
for t > Tp P (t) = 0 (Fig. 2a) σ(t) = 0 (Fig. 2b)

where Tp - pulse duration, equal to 1 or 1/2 of T0 (period of fundamental natural
flexural vibrations).

The solutions to the problem of dynamic buckling were obtained numerically
on the basis of ANSYS software, plate structures were meshed with four nodes
isoparametric nonlinear shell elements. The detailed procedure was described in
earlier publications (e.g. [6], [12]). In all considered cases the form of initial deflec-
tion was assumed as identical to the lowest static buckling mode.

The results of calculations have been presented as the relations between maximal
dimensionless dynamic defection of a structure and ratio of a pulse amplitude versus
static buckling load determined for perfect structure (i.e. bifurcation load). In
literature, following Budiansky and Hutchinson, the quotient of pulse amplitude
and static bucking load is termed as Dynamic Load Factor (DLF= σdyn/σcr).

It should be mentioned that for elastic isotropic materials these relations do
not depend on the material type whereas the strong effect of geometric parame-
ters, initial deflections, boundary conditions and pulse loading parameters can be
observed.
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3. Factors affecting dynamic response of plate structure

3.1. Initial imperfections
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Figure 3 Influence of initial deflection amplitude on plate dynamic response

In Fig. 3 the courses of plate dimensionless maximal deflection (the quotient of
maximal deflection to plate thickness) as a function of dimensionless dynamic load
have been shown. The static response has been presented as well. The values of
initial deflection amplitude varied in range of 0.005 h to 0.05h. It can be easily
seen that for very small imperfections the dynamic buckling load determined on
the basis of Budiansky–Hutchinson criterion is greater than static one (Ncr) and
in some range of loads Ndyn/Ncr the dynamic deflections are smaller than static
ones. For larger values of imperfections the character of curves changes (it becomes
similar to static course) and dynamic buckling load is less than static one for perfect
plate.

Therefore the question arises – should the buckling load of imperfect structure
be determined relative to the static bifurcation load as it is commonly assumed?
Perhaps the information of dynamic load carrying capacity would be more evident
with regard to static buckling load determined in similar way for imperfect structure.

3.2. Pulse shape and duration

In Figs 4 and 5 the results obtained for pulses of rectangular and sinusoidal shape,
of equal duration Tp, are shown. The pulses of equal area under the curve describing
the time dependence of load – equal impulses (Fig. 4 and 5) and pulses of equal
amplitude (Fig. 5) were considered.

For square plate simply supported along all edges of rather large imperfection
(w0max=0.1 h) the strong influence of pulse shape and duration Tp on character
and values of dynamic deflections is visible.
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Figure 4 Influence of pulse shape and duration on plate dynamic response (geometric parameters
the same as in Fig.3)
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Figure 5 Influence of pulse shape on column dynamic response (cubic column of different wall
thickness)

For pulses of duration equal to the T0 (period of fundament flexural vibrations)
the dynamic buckling load (determined on the basis of Budiansky–Hutchinson cri-
terion) is smaller than static critical load and sinusoidal pulse involves larger de-
flections than rectangular one. For Tp = 1/2T0 the situation changes – the dynamic
buckling load grows rapidly and in the same time the deflections become larger for
rectangular pulse. It can be noted that the character of the curves for Tp = 1/2T0

becomes similar to the character of courses for a plate with small initial imperfec-
tions at Tp = T0 (see Fig. 3). For very short pulses, in considered range of loading,
the dynamic deflections are so small that it is impossible to apply any dynamic
buckling criterion (the phenomenon of buckling does not occur).
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Figure 6 Influence of imperfections and different wall thickness on column dynamic response

For a column of cubic outline but of different wall thickness (Figs 5 and 6) the
dynamic deflections versus dynamic load amplitude are presented. Three types of
pulse load: rectangular and two sinusoidal (one of the same amplitude value as
rectangular one and the second of the same area) were considered (Fig. 5). The
duration was kept constant Tp = T0 (Fig. 5) or Tp = 1/2T0 (Fig.6) whereas different
values of initial deflection amplitude were taken into account. In all cases for some
value of dynamic load the rapid change of buckling mode (from one to three half–
waves) occurs. For comparison in Fig. 6 the curve for cubic column of constant wall
thickness has been drawn – in whole range of loading the buckling mode is the same
and the behavior of a column is similar (but not the same – see ref. [8] for details)
to the behavior of a square plate simply supported along all edges. Therefore the
change of buckling modes occurs in case corresponding to the plate of unloaded
edges clamped. It can be noticed that for longer rectangular pulses (Tp = T0 – Fig.
5) this phenomenon appears at higher dynamic amplitude than for shorter ones
(Tp = 1/2T0 – Fig. 6). Comparing the curves of dynamic deflections for columns
of the same imperfection amplitude (0.1h) loaded by rectangular pulse of different
duration (see Figs 5 and 6) the same conclusions as mentioned earlier can be drawn
– the pulse duration influences the character of courses wmax/h = f(Ndyn/Ncr) and
the dynamic buckling load is greater for shorter pulses (estimated on the basis of
Budiansky-Hutchinson criterion critical value of σdyn stays in range 0.8-1.0σcr – for
Tp = T0 and 1.2-1.6σcr for Tp = 1/2T0).

During calculations it was observed that pulse duration affects also the time in
which the maximal deflections appear (Fig. 7) [6], [8]. For shorter pulses almost
independently on initial imperfections magnitude and on pulse amplitude value the
maximum deflection appeared after the load was released. For pulses of Tp=T0

the maximal deflection took place within pulse duration except limited range of
dynamic loads in cases of small imperfection amplitude.



About Some Important Parameters ... 275

1 2 3 4

0

2

4

6

8

10

12

14

Tp = 1 To

ti
m

e
of

m
ax

im
al

de
fl

ec
ti
on

[m
s]

s
dyn

/s
cr

0.5Tp 0.10h 1Tp 0.10h
0.5Tp 0.05h 1Tp 0.05h
0.5Tp 0.01h 1Tp 0.01h

T
p

= 0.5T
o

T
p

= T
o

Tp = 0.5 To

Figure 7 Influence of pulse duration on time of maximal deflection appearance (cubic column of
equal wall thickness, rectangular pulse)

3.3. Material characteristics

In most publications concerning the problem of dynamic buckling of plates the un-
limited material elasticity has been assumed. It is known that in order to determine
satisfactorily static ultimate load of thin–walled plated structure it is necessary to
take into account the postbuckling state in the elasto–plastic range together with
initial imperfections. The strength reserve of the statically compressed plate ele-
ment in the post–buckling state strongly depends on the width to thickness ratio
and on the material properties (magnitude of yield limit, shape of characteristic
in plastic range). This reserve may disappear when the width to thickness ratio is
relatively small and then the unfavorable effect of initial imperfections can bring
such a decrease of the load carrying capacity that it becomes significantly lower
than static buckling load for perfect structure.

On the other hand it is known that material properties change at loadings ap-
plied dynamically (see: e.g. [4]). The fact that mild steel is strain rate sensitive is
well known and widely documented in literature. It is reported that the yield limit
value of a mild steel under dynamic loading increases and the hardening part of
strain–stress curve lies over static characteristic.

Consideration of a column made of steel with rather low initial yield limit
σy=100MPa allows to investigate the problem of dynamic buckling in the elastic–
plastic range even for low pulse amplitudes. Exemplary results of theses analyses
are presented in Fig. 8 (when static material characteristic was taken into account)
and in Fig. 9 (the effect of strain rate was included). The effect of strain rate
on the dynamic buckling of short columns of closed cross-sections has been widely
described by Mania [11], [12].

The curves presented in Fig. 8 showing the relations between nondimensional dy-
namic deflection and effective stress ratio (Sratio = σeff/σY –where σeff –effective
stress calculated accordingly to Huber-Mises formula, σY – yield stress) were ob-
tained under assumption that static material characteristic is bilinear. It can be
seen that for σdyn/σcr > 2 deflections grow almost linearly. For σdyn/σcr > 3 the
plastic regions become pronounced the curves tend to infinity.
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Figure 9 Maximal column deflections versus dynamic load (rectangular pulse) (strain rate effect
included)

In Fig. 9 the courses of maximal deflections are shown for cubic column of equal wall
thickness (b/h = 71) when the strain–rate effect was included into analysis. In this
case - accordingly to Budiansky–Hutchinson criterion – the dynamic buckling load
is 29% greater for rate sensitive material than for strain rate independent behavior.
The analysis of a column made of material without strain rate effect was limited
to dynamic amplitudes (DLF ) not larger than 1.5. At greater pulse amplitudes
large deformations appeared at the column corners and the plastic solution process
was not convergent. For more results concerning viscoplastic materials see works of
Mania e.g. [11], [12].
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Figure 10 Comparison of dynamic buckling load estimated on the basis of three buckling criteria

3.4. Dynamic buckling load versus assumed stability criteria

The results of calculations presented in the paper allow to discuss the effect of
application of the following criteria:

• the simplest criterion, proposed by Volmir [19] – the dynamic critical load
corresponds to the amplitude of pulse load (of constant duration) at which
the maximal plate deflection is equal to some constant value k (k=one half or
one plate thickness),

• Budiansky&Hutchinson [3] stability criterion that states: dynamic stability
loss occurs when the maximal plate deflection grows rapidly with the small
variation of the load amplitude.

• Petry and Fahlbusch [14] presented a dynamic failure criterion for isotropic
plates: a dynamic response caused by a pulse load is defined to be dynamic
stable if the condition that the effective stress σeff (found by Huber–Mises
formula) is not greater than limit stress σL, is fulfilled at every time every-
where in the structure. This criterion was presented for linearly elastic –
perfectly plastic materials and the limit stress was assumed as equal to yield
stress.

• Ari Gur and Simonetta [1] analyzed the behaviour of laminated columns and
plates with all edges clamped subjected to sinusoidal pulse loading and for-
mulated four buckling criteria. One of them connects the dynamic buckling
load with the phenomenon of buckling mode change.

The simple and quick simple comparison of first three mentioned earlier criteria
was made for square steel plate of yield limit value equal to 200 MPa (Fig. 10).
It can be seen that Volmir’s criterion is the most conservative although in many
cases it gives the results staying very close to the results obtained on the basis
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of Budiansky–Hutchinson criterion. According to Petry–Fahlbusch the dynamic
buckling load is much greater (see also Fig. 8 when Sratio=1).

As it is shown in Figs. 5 and 6 in case of a column of different walls thickness
the buckling mode changes from one to three halfwaves . More half–waves over-
lap causing lower deflection amplitude. In this situation one of the Ari–Gur and
Simonetta criteria can be used. It defines the critical condition for dynamic load
as such for which the shape change in dynamic response occurs. According to this
condition the dynamic critical loads are ca 50% greater than the values determined
with application of the Budiansky–Hutchinson criterion.

Therefore the relation between the determined value of dynamic buckling load
and the applied dynamic stability criterion can be seen. This is one of basic differ-
ences between dynamic and static buckling analysis where for the last the bifurcation
buckling load exists.

4. Conclusions

The calculations presented in this paper confirmed the facts well known from the
subject literature – the geometric imperfections, shape and duration time of pulse
loading are the factors that strongly affect the dynamic behaviour of plates. In
most works the influence of pulse shape was investigated under the assumption of
equal amplitude at constant duration for different pulses and then the rectangular
pulse always causes the largest deflections. In this paper the pulses of equal area
were also compared. Then it showed that for pulses of short duration the deflections
caused by rectangular loading grow more rapidly but for the duration equal to the
period of natural vibrations larger deflections correspond to the sinusoidal pulse.

It should be also noticed that usually the analysis of dynamic stability is per-
formed under the assumption of unlimited elastic range. Taking into account the
material properties obtained from static tests it can be easily seen that the limit
state (determined by the moment when the effective stress reaches the yield stress)
appears for rather low values of pulse amplitude. It was proved that accounting
for the strain-rate dependence of material properties in dynamic buckling analysis
results in higher values of dynamic buckling loads.

The dynamic stability criterion, applied in the dynamic buckling analysis, influ-
ences the drawn conclusions and the critical load value.
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