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In the paper thin–walled isotropic and orthotropic multicell columns with open cross–
section are consisdered. The local buckling and load carrying capacity analysis of these
type columns under uniform compression was performed. Columns built of square shape
cells with equal thickness of all walls and constant cross–section area were analyzed. The
width of walls depends on the number of cells present in a column. The obtained results
– it is the cell number and cross–section shape influence on the buckling load and load
carrying capacity, are presented in the form of graphs and tables. The relatively high
increase of local buckling stress value is demonstrated as well as the decrease of relation-
ship between the load carrying capacity and buckling load – both events connected with
increase of cell number.
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1. Introduction and basic assumptions

The paper deals with the local buckling and load carrying capacity analysis of mul-
ticell columns of open cross–section. The column is axially uniformly compressed
whereas the shortening of the column takes place with loaded edges mutually par-
allel. The single cell is of square cross–section and its dimensions depend on the
number of cells. The one cell column (box type column) has a square cross–section
of b1 width and t1 wall thickness. Therefore its cross–section area equals to:

A1 = 4b1t (1)

The double–cell column has the cross–section sides defined as b2×2b2. The equal–leg
angle shape column can be built of three cells with b3 cell side width. The four cell
column can posses the shape of T–profile, Z–profile or an angle with unequal–legs.
Then the one side length is termed as b4.



282 Królak, M. and Mania, R.J.

Figure 1 Cross–sections of single–, double–, three– and four–cell columns

i n= 13, = 40

Figure 2 Cross–sections of open profile columns built of 13 cells

The cross–section shapes of mentioned columns with equal thickness of all walls and
equal cross–section areas are presented in Fig. 1.

The one cell column has four walls and extending the cross–section with one
more cell required adding of three walls more. Then the relationship between n
number of walls and i number of cells is following:

n = 4 + 3 (i− 1) i = 1, 2, 3, . . . (2)

The column compounded of five cells can be of C–shape, Z–shape or an angle
either equal–leg or unequal–leg shape. The column of I–shape cross–section requires
application of seven cells whereas unequal I–section profile requires at least nine
cells. In Fig. 2 – as an example, there is presented a set of multicell column
cross–sections consisting of 13 cells.

The analyzed columns can be made of isotropic material or orthotropic material,
where the principal axes of orthotropy are parallel to the column edges. Fiber rein-
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forced plastic is an ordinary orthotropic material that can be applied for multicell
columns walls [5].

For pronounced and easy comparison of local buckling stress values and load
carrying capacity, in the following considerations it was assumed for the analyzed
columns:

• columns are made of the same material,

• the thickness t of all walls is equal,

• for all shapes of column profile the cross–section area is equal,

• the width of single cell wall is dependent on the column cell number.

The last requirements is done for comparison reasons only.
The cross–section area of a column with i number of cells (independent of profile

shape) is defined by the following formula:

Ai = nbit = [4 + 3 (i− 1)] bit (3)

Comparing the cross-section area of i–cell column with the section area of a single
cell square column, it was determined the breadth of a cell wall of i–cell column as
a function of b1 and i:

bi =
4b1

4 + 3 (i− 1)
(4)

In Tab. 1 some exemplary values of bi/b1 quotients for i = 1,2,. . . ,13 are calculated.

Table 1 Quotients values of cell wall width

b1/b1 b2/b1 b3/b1 b4/b1 b5/b1 b6/b1 b7/b1

1,000 0,571 0,400 0,308 0,250 0,211 0,182
b8/b1 b9/b1 b10/b1 b11/b1 b12/b1 b13/b1

0,160 0,143 0,129 0,118 0,108 0,100

The local buckling and load carrying capacity for multicell columns of closed
section were analyzed in papers [1], [3], [4].

2. Local buckling stress

To establish formulas for local buckling stress the following assumptions were made:

• the thickness t of column walls and material properties allow elastic local
buckling of analyzed column,

• there is no initial imperfections in column walls,

• all loaded column edges are simply supported,

• the loaded column ends remain plane and undergo evenly shortening,
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• the global (Euler type) buckling will not occur (The global buckling could be
”prevented” by compound column design),

• the interaction between different buckling modes will not occur.

According to mentioned above assumptions, to determine the local buckling stress,
all column walls can be considered as thin rectangular plates, simply supported
along all edges.

In case of open section profile columns with high number of cells with small
dimension bi and free edges – for example angle section or T–section, local buckling
of whole wall or coupling buckling can occur. Such wall can work as a structural
corrugated core sandwich plate however this type of structure wasn’t considered in
this paper. It was assumed that all dimensions of analyzed columns are selected to
avoid described above buckling possibility.

For columns which fulfill all listed conditions and which are made of orthotropic
materials, Królak et al. [4] gave an approximated formula for local buckling stress
value for wall of bi width:

σloc
cr i = k

π2E1

12γ

(
t

bi

)2

(5)

In (5) k is a stability factor, which for long plates, simply supported at all edges,
has a value of k = 4, γ is a factor which depends on orthotropic material moduli
E1, E2, G and Poisson’s ratios ν12 and ν21. The inverse of factor γ is given by the
relation (6):

1
γ

=
1
2

√
E1
E2

+ 1
2

E2ν12
E1

+ G
E1

(
1− E2ν2

12
E1

)

1− E2ν2
12

E1

(6)

where E1 is elastic modulus in the longitudinal direction (column compression direc-
tion), E2 is elastic modulus in the transverse direction (perpendicular to compres-
sion direction), G is Kirchhoff modulus and ν12, ν21 are Poisson’s ratios. According
to Betty’s theorem it is valid ν12E1 = ν21E2. Equations (5) and (6) were established
after some rearrangements of expression given in Volmir work [2]. For special case
– isotropic plates, there are well known equalities E1 = E2 = E, ν12 = ν21 = ν and
G = E/2(1 + ν).

Substituting relation (4) into (5) finally gives:

σloc
cr i = k

π2E1

12γ

[
4 + 3 (i− 1)

4
t

b1

]2

(7)

or

σloc
cr i =

[4 + 3 (i− 1)]2

16
k

π2E1

12γ

(
t

b1

)2

(8)

Describing in (8) new terms as:

αi =
[4 + 3 (i− 1)]2

16
(9)
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and

σloc
cr 1 = k

π2E1

12γ

(
t

b1

)2

(10)

leads to writing this formula in the following shorter form:

σloc
cr i = αiσ

loc
cr 1 (11)

In expression (11) σloc
cr 1 is critical stress of local buckling for single cell column with

b1 width of cell wall. Whereas for orthotropic rectangular plate with b1 width,
wall thickness t and longitudinal modulus E1 and coefficient γ given by (6), σloc

cr 1

is determined according to (8). Numerical (discrete) values of coefficient αi are
presented in Fig. 3.
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Figure 3 αi coefficient as a function of cell number

It is worth noting that the length of longitudinal buckling half–waves in compressed
orthotropic plates strictly depends on the stiffness ratio i.e. D1/D2 quotient. For
orthotropic plate D1 is the bending stiffness in the loading (longitudinal) direction
and D2 is the bending stiffness in the direction (transverse) normal to loading. For
D1/D2 < 1 the length of half-waves is shorter where as for D1/D2 > 1 longer
than in isotropic plates (D1 = D2) with equal geometry and identical boundary
conditions [2].

3. Stability and load carrying capacity calculation

The numerical calculations were performed for isotropic columns with following
geometrical and material properties: i = 5÷13 – cell number, t = 0.5 mm – wall
thickness,the width of cell walls was determined from relation (4), the cross–section
area was assumed equal to A = 1000 mm2, the total column length was li = 5× bi

with elastic modulus E = 2 × 105 MPa, Poisson’s ratio – ν = 0.3 and yield limit
σpl = 200 MPa.
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The considered columns are subjected to uniform axial compression (even short-
ening of a total column length). The local buckling stress values are obtained from
formula (7) and determined with finite element method application. The load car-
rying capacity for all columns was calculated with finite element software ANSYS
ver 11.1 usage. For comparison, the results for C–section column with cell number
varying from 5 to 13 (with equal area A) are listed in Table 2. From these values,
the strong influence of cell number on the local buckling stress and load carrying
capacity is clearly visible.

Figure 4 7– and 11–cells columns buckling mode

In Fig. 4 the examples of buckling mode and deformations in failure - post–
buckling state are presented, for C–section multicell and angle profiles, respectively.
Both results were obtained with finite element solutions.

In Tab. 3 the numerical and analytical results are compared for 13–cells column
with different section profiles. The aim of performed calculations was to determine
the influence of column open cross–section shape on the buckling stress value and
load carrying capacity of axially compressed multicell columns.

In spite of small differences in load carrying capacity values for columns with
equal cells number (fourth column of Tab. 3), the load shortening curves obtained
for these profiles prove similar behavior of compared columns along the postbuckling
path (Fig. 7). Even failure modes for these profiles show similar shapes and location
(Fig. 8) in the structure.

The stability problem and load carrying capacity of similar multicell columns
subjected to bending and/or eccentric compression will be considered in separate
paper. It is well known that for bending type loading the cross-section profile shape
is of great significance (keeping A = const.).
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Table 2 Buckling load and load carrying capacity as a function of cell number

i – cell
num-
ber

Section
profile
Fig. 5

Ncr

[kN]
Eq.
(7)

Ncr

[kN]
FEM

∆ =∣∣∣NF EM−N(7)

N(7)

∣∣∣
Nlim

[kN]
Nlim/Ncr(7)

5 1 11.570 11.871 2.53 55.675 4.81
6 2 16.310 15.949 1.87 57.097 3.54
7 3 21.870 21.124 2.10 71.441 3.27
7 4 21.87 21.423 2.10 77.209 3.53
8 5 28.240 27.483 2.77 88.111 3.12
9 6 35.430 34.130 3.81 95.257 2.69
10 7 43.420 41.954 3.50 101.864 2.35
11 8 52.450 50.092 4.71 107.598 2.05
12 9 61.870 58.636 5.51 113.050 1.83
13 10 72.300 67.489 7.13 118.713 1.64
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Figure 5 Section profile for Tab. 2
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Table 3 Buckling load and load carrying capacity of 13-cells column profile

Cell number Profile section
Fig. 6

Ncr [kN] Nlim [kN]

13-cells
chanel shape

1 67,489 118,713

13-cells
prismatic bar

2 61,398 119,481

13-cells
equal-leg angle

3 67,239 119,484

13-cells
T-shape

4 66,994 119,383

13-cells
I-shape

5 68,792 118,735

13-cells
hat

6 69,341 114,967
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Figure 6 Section profile for Tab. 3



Critical and Postcritical Behavior ... 289

4. Analysis of results

Finite Element Method allows to analyze stability and load carrying capacity prob-
lems of multicell columns of different shapes of cell section and different material
properties (isotropy and orthotropy). In this paper the cells of square section –
as a pronounced example, were considered. The aim of this analysis was to prove
that multicell columns can withstand much greater local buckling load than single
cell column with equal cross–section area and posses much greater load carrying
capacity as single cell column, as well.

The obtained results of numerical calculation show that the number of cells
is of essential influence on the local buckling stress value. For 13–cells column
their critical stresses are approximately 6 times greater than for 5–cells column.
The profile section shape with given number of cells doesn’t influence the buckling
stress value or load carrying capacity.

Figure 7 Comparison of 13–cells I–section and C–section columns load–shortening curves

Figure 8 Failure modes of 13–cells C–section and I–section columns
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Figure 9 Load carrying capacity and buckling load quotient

The quotient of load carrying capacity and buckling load decreases when the cell
number increases what can be directly confirmed by column 7 of Tab. 2 data and
Fig. 9.

Simple comparison of critical stress values established with the application of
formula (7) with those obtained from FEM solution, proves that the approximated
formula (7) can be applied in practice to calculate σloc

cr , despite the difference in-
crease up to 7.1% for 13–cells column.
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