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The work presents an analysis buckling of a sandwich bar and rotor in bipolar electric
drive motor with damping. In order to determine the stability of the transverse motion,
equation of its transverse vibration were formulated. From the equations of motion,
differential equations interrelating the dynamic deflection with space and time were de-
rived. Eventually, homogeneous, partial, differential equations have been obtained and
solved by the Fourier’s method. Then an ordinary differential equation (Hill’s equation)
describing the vibration have been solved. An analysis of the solution became the ba-
sis for determining the regions of bar and rotor motion instability. Finally, the critical
damping coefficient values at which parametric resonance occurs have been determined.
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1. Dynamic stability of sandwich bar

Sandwich constructions are characterized by light weight and high strength. Such
features are highly valuable in aviation, building engineering and automotive ap-
plications. The primary aim of using sandwich constructions is to obtain properly
strong and rigid structures with vibration damping capacity and good insulating
properties. Figure 1 shows a scheme of a sandwich construction which is composed
of two thin facing plates and a relatively thick core [9,10]. The core, made of plastic
and metal sheet or foil, transfers transverse forces and maintains a constant dis-
tance between the plates. Sandwich constructions are classified into bars, plates
and beams. A major problem in the design of sandwich constructions is the as-
sessment of their stability under axial loads causing their buckling or folding. The
existing methods of calculating such structures are limited to the assessment of their
stability under loads constant in time [8,10].

There are no studies dealing with the analysis of parametric vibration and dy-
namic stability (dynamic buckling). This chapter presents a dynamic analysis of a
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sandwich bar compressed by a periodically variable force, assuming that the core is
linearly viscoelastic. Differential equations describing the dynamic flexural buckling
of bars are derived and regions of instability are identified. The dynamic analysis
of sandwich constructions is of great importance for automotive vehicles and aero-
planes, since most of the loads which occur in them have the form of time-dependent
forces.

Figure 1 Scheme of sandwich construction 1 – plates, 2 – core

2. Dynamic buckling of a sandwich bar

A simply–supported sandwich bar compressed by time-dependent force F is shown
in Fig. 2. Force F can be expressed as follows

F = F1 + F2 cos pt (1)

where
F1 – constant component of the compressive force,
F2 – amplitude of the variable component of the compressive force,
p – frequency of variable component F2,
t – time.

Figure 2 Sandwich bar compressed by force F
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The cross section of the sandwich bar is shown in Fig. 3. The basis for describing
the dynamic buckling of the sandwich bar is the differential equation of the sandwich
beam centre line. The equation can be written as

B
∂4y

∂x4
= q − k

B

S

∂2q

∂x2
(2)

where:
B – flexural rigidity of the bar,
q – load intensity,
k – a coefficient representing the influence of the transverse force on the deflection
of the bar,
S – transverse rigidity of the bar.

Figure 3 Cross section of sandwich bar

In sandwich constructions the core is merely sheared and does not transfer normal
stresses whereby coefficient k is equal to one (k = 1).

S = 2bcGc (3)

where
b, c – dimensions of the core (Fig. 3),
Gc – modulus of rigidity of the core material.
Load intensity q can be written in the form:

q = q1 + q2 + q3 (4)

q1 = −F
∂2y

∂x2
q2 = −µ

∂2y

∂t2
q3 = −ηr

∂y

∂t
(5)

where
µ – mass of the unit of length,
ηr – damping coefficient of the core material.
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After substituting equations (5) into differential equation (2) the following dif-
ferential equation is obtained:

B

(
1− F

S

)
∂4y

∂x4
+ F

∂2y

∂x2
− B

S
µ

∂4y

∂x2∂t2
+ µ

∂2y

∂t2
+ ηr

∂y

∂t
− B

S
ηr

∂3y

∂x2∂t
= 0 (6)

The above equation is a fourth–order homogeneous equation with time–dependent
coefficients. It was solved by the method of separation of variables (Fourier’s
method). The solution can be presented in the form of an infinite series:

y =
∞∑

n=1

Xn (x)Tn (t) (7)

Eigenfunctions Xn(x), satisfying the boundary conditions at the supports of the
bar at its ends, have the following form:

Xn (x) = An sin
(πnx

l

)
(8)

Having substituted equations (7) and (8) into the differential equation (6), one gets
the following ordinary differential equation describing functions Tn(t):

T̈n + 2hṪn + ω2
on (1− 2ψn cos pt)Tn = 0 (9)

where

2h =
ηr

µ
2ψn =

F2

(
πn
l

)2

µω2
on

(10)

The square of frequency ωon can be expressed as follows:

ω2
on = ω2

o −
F1

(
πn
l

)2

µ
(11)

where
ωo – the natural frequency of vibration of the bar when F1 = 0, F2 = 0, ηr = 0.
The square of frequency ωo can be expressed as follows:

ω2
o =

B
(

πn
l

)2

µ
[
1 + B

S

(
πn
l

)2
] (12)

Differential equation (9) is Hill’s equation in the form [3, 5]:

T̈n + 2hṪn + Ω2
n [1− f (t)] Tn = 0 (13)

If there is no damping in the core (h = 0) and assuming f(t) = 2ψn cos pt, one gets
the following classical Mathieu equation

T̈n + ω2
on (1− 2ψn cos pt)Tn = 0 (14)

In order to solve equation (13), a change of variable was made and the solution was
expressed in the form.
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3. Dynamic stability of rotor

Among in electric machines, the two–pole asynchronous motors occupy a particular
space. These motors have small value of the magnetic gap. For this reason, the basic
problem encountered in the phase of construction of such machines is to estimate
the stability of the rotors. The problem of stability of rotors is in relation to
the problem of vibration. On certain values of some quantities, such a rotational
speed, magnetic tension, rigidity, etc. the effect of unstability can take place. The
assessment of the stability is of particular importance in the case of long rotors, for
example rotors of motors of deep–well pumps.

Problem of estimation of stability of transverse motion of rotors without damp-
ing are presented in the works [4, 6, 7]. In this paper the influence of damping in
rotors on the dynamic stability of its rotors in two-pole asynchronous motors have
been determined.

The model of rotor accepted for calculations is shown in Fig.4.

Figure 4 The model of rotor accepted for calculations

In order to simplify the considerations a vertical position of the rotor have been as-
sumed. The basis for describing the dynamic stability of the rotor is the differential
equation of the centre line of the beam. The equation can be written as:

S
∂4y

∂x4
= −qx (15)

where:
S – flexural rigidity of the section 2
y – deflection of the rotor
qx – load intensity.
The load intensity qx can be introduced in the form:

qx = q1x + q2x + q3x (16)



322 Morzuch, W.

where:
q1x – load intensity related to the influence of the forces of inertia,
q2x – load intensity related to the influence of the magnetic tension,
q3x – load intensity related to the influence of the damping.
The load intensity q1x can be expressed as:

q1x = −µ
∂2y

∂t2
(17)

where:
µ – mass of the unit of length of the section 2,
t – time.
The load intensity q2x can be expressed as [1, 2]:

q2x = (A1 + A2 cos pt)y (18)

where:
A1, A2, p – parameters of magnetic tension [2, 6, 7].
The load intensity q3x can be expressed as:

q3x = −ηr
∂y

∂t
(19)

where:
ηr – damping coefficient on the rotor.
After substituting (16) in (15), the following differential equation in obtained:

β2 ∂4y

∂x4
+

∂2y

∂t2
+ 2h

∂y

∂t
− (γ + ϑ cos pt)y = 0 (20)

where:
β2 =

S

µ
2h =

η

µ
γ =

A1

µ
ϑ =

A2

µ
(21)

The above equation is a fourth – order homogeneous equation with time – dependent
coefficients. It was solved by the Fourier’s method. The solution can be presented
in the form of an infinite series:

y =
∞∑

n=1

Xn(x)Tn(t) (22)

After a separation of variables and definion of parameter kn the following equations
have been obtained:

IV

Xn(x)− k4
n

II

Xn(x) = 0 (23)

T̈n + 2hṪn + (ω2
n − ϑ cos pt)Tn = 0 (24)

where:
ωn denotes the n–order frequency of free vibrations of rotor when ϑ = 0, ηr = 0
The equation (24) can be expressed as follows:

T̈n + 2hṪn + ω2
n(1− 2ψn cos pt)Tn = 0 (25)
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where:

2ψn =
ϑ

ω2
n

(26)

Differential equation (25) is Hill’s equation in the form [3, 5]:

T̈n + 2hṪn + Ω2
n[1− f(t)]Tn = 0 (27)

If there is no damping in the rotor (h = 0) and assuming f(t) = 2ψn cos pt, one gets
the following classical Mathieu equation:

T̈n + ω2
on(1− 2ψn cos pt)Tn = 0 (28)

4. Solution of Hill’s equation

In order to solve equation (27), a change of variable was made and the solution was
expressed in the form:

Tn (t) = e−htϕn (t) (29)

In this way a new differential equation for function φn(t) was obtained:

ϕ̈n + ω2
n [1− f1 (t)] ϕn = 0 (30)

where
ω2

n = Ω2
n − h2 (31)

f1 (t) =
Ω2

n

ω2
n

f (t) (32)

Equation (30) is the Mathieu equation without damping. Therefore for the analysis
of this equation one can use the solution of equation (28), substituting f1(t) for f(t)
and Ω2

n − h2 for ω2
n.

Let us now analyze the stability of the solutions of the differential equation (30),
limiting the analysis to the first (most important) region of instability.

By solving of equation (9) the boundary lines of the first region of instability
has been obtained (Fig. 5).

In a similar way as in the case without damping the following relations for the
boundary lines of the first region of instability are obtained:

p

Ωn
< 2

√
(1− ξn)2 − ψ2

n

1− 3ξn −
√

ψ2
n − 4ξn + 8ξ2

n

(33)

p

Ωn
> 2

√
(1− ξn)2 − ψ2

n

1− 3ξn +
√

ψ2
n − 4ξn + 8ξ2

n

(34)

where

ξn =
(

h

Ωn

)2

(35)
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Figure 5 First region of instability (ξ1 = 0, without damping, ξ1 6= 0, with damping)

Vertex of the first region instability has the coordinates:

ψ1gr = 2
√

ξ1 − 2ξ2
1 ,

P

Ω1
= 2

√
1− 3ξ1 (36)

Relation (33) and (34) describe the upper and lower boundary line respectively.
From formula (36) the boundary value of coefficient ψ1 at which parametric reso-
nance occurs has been obtained. If ψ1 < ψ1gr, no parametric resonance arises. It
follows from the above that there exist compressive force components F1 and F2,
and coefficient of damping at which the bar does not lose stability. Likewise exist
coefficient A1 and A2 of magnetic tension and coefficient of damping at which the
rotor does not lose stability.
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