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The paper deals with some considerations focused on resistance assessment of slender
cylindrical shells subjected to the axial compression. The load carrying capacity of such
shells is determined by stability criterion. It is not enough to determine the critical load in
order to assess the load carrying capacity. It is necessary to apply the whole procedure
recommended by designing codes and other design recommendations. Details of this
procedure were presented in the paper. The correctness of the resistance assessment was
verified experimentally on segments of cylindrical shells made of stainless steel.
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1. Introduction

The buckling problem of axially compressed, slender, elastic cylindrical shell was
solved at the beginning of twentieth century (R. Lorentz, 1908 and 1911, S. Timo-
shenko, 1910, R. V. Southwell, 1913) and was probably the first analytical solution
of any shell buckling problem. This classical solution can be traced on the basis of
monographs by Timoshenko [1] and by Fluegge [2].

The designer who wants to construct safely a cylindrical shell has to asses its
resistance taking into account various criteria. In a case of relatively slender cylin-
drical shells the buckling criterion is the most decisive as far as the resistance is
concerned. The knowledge of the classical buckling solution constitutes very im-
portant indication but of course is not sufficient. To design safely a structure in a
form of cylindrical shell it is required to take into account design recommendations
like Eurocode [3] or European design recommendations (EDR) published by ECCS
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[4], in which experiences of many designers and scientists working in this field were
converted into recommendations warranting the safe designing of shell structures.

The paper deals with an attempt of resistance assessment of steel cylindrical
shells subjected to the axial compression. Shells were fabricated from stainless steel
sheets, cold–rolled and welded by the single longitudinal seam.

At the beginning of the paper the calculation of the critical load according to
the initial buckling theory was presented. It is the load which evokes the buckling
of considered shell. The presented procedure corresponds exactly to the proposal
of Fluegge [2] together with a graphical method of determination of critical load
on the basis of the so called garland curve. The critical load of considered shell
was determined also numerically by means of the COSMOS/M system [5] with the
initial buckling option.

It was shown that the presented numerical solution was nearly identical as the
classical, analytical solution.

The buckling resistance assessment of the considered shell was made also on
the basis of European code EN 1993: Part 1.6 [3] and on the basis of European
design recommendations (EDR) [4]. This approach was presented in the paper in
details. The resistance determined by this way turned out to be much smaller than
determined earlier values of critical loads.
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Figure 1 The cylinder under compression

Results of experimental investigations of three cylindrical shells supported consis-
tently with a classical case of Lorentz, Timoshenko and Southwell were presented in
the paper as well. The resistance obtained experimentally was much smaller than
the value of the critical force for the ideal cylindrical shell. The reason was obvious:
inevitable geometrical imperfection were present in examined shells. It is worth
mentioning that the resistance prediction which followed from codes [3] and [4] was
always smaller than resistances obtained experimentally.
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2. Stability of axially compressed cylindrical shell. Analytical solution

The presented below algorithm, based on analytical solution, was taken from the
monograph of Fluegge [2].

The problem of initial stability of cylindrical shell compressed in longitudinal
direction can be reduced to the following relationship (Eq. (7–13) from [2]):

q2 = {(1− ν2)λ4 + k[(λ2 + m2)4 − 2(νλ6 + 3λ4m2 + (4− ν)λ2m4 + m6)
+2(2− ν)λ2m2 + m4]}/ [

λ2(λ2 + m2)2 + λ2m2
] (1)

in which the following notations were used:

q2 =
P

D
k =

t2

12a2
D =

Et

1− ν2
λ =

nπa

l
(2)

where:
t – the shell thickness,
l – the length of cylindrical shell,
a – the radius of cylindrical shell,
n – the number of half–waves in longitudinal direction,
m – the number of full waves in circumferential direction,
P – the distributed load acting in longitudinal direction,
E – the Young’s modulus,
ν – the Poissons’s ratio.
For the defined shell geometry (l, a and t are known) and material parameters

(E and ν are known) the value of q2 depends on pair of two integer numbers m i
n. Characteristics shown in Fig. 2 refer to the number m taken from the interval
0–15 and were obtained for the following data:

E = 193 GPa,
ν = 0.3,
l = 400 mm,
a = 200 mm (comp. Fig. 1).
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Figure 2 The collection of solutions for various m as functions of x
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To determine the critical value of the load one should find such a pair of integer
numbers m i n, for which the value of q2 attains the minimum. The minimum value
of q2 obtained in this manner is the critical load which was looked for and the pair
of integer numbers m and n determines the buckling mode corresponding to the
primary bifurcation point. The procedure leading to determination of the lowest
value of q2 can be performed graphically and it is the easiest approach.

Let us introduce the auxiliary variable

x =
l

na
hence λ =

π

x
(3)

For the presented above data the variable

x =
l

na
=

400
n200

=
2
n

Figure 3 The detail from the Fig. 2

In this particular case qcr
2 = 1, 0713 · 10−3 (comp. Fig. 3) and the buckling form is

defined by the one half–wave in longitudinal direction and eight waves in circumfer-
ential direction. This buckling form was presented in Fig. 4 in which only one half
of the cylinder was presented (the symmetry plane is located on the lower edge).

The critical value of the distributed load acting on the edge of the cylinder will
be calculated from the relationship:

Pcr = qcr
2 D = 1, 0713 · 10−3 193 · 109 · 0, 0004

1− 0, 32
= 90, 84 · 103N/m (4)

and the meridian critical stress can be calculated from the formula:

σcr =
Pcr

t
=

90, 84 · 103

0, 0004
= 227, 21 · 106N/m2 = 227, 21MPa (5)
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Figure 4 The first buckling mode: m = 8, n = 1

The well known from the literature (cf. [1], [6]), approximate formula on critical
value of longitudinal stress leads to the result:

σcr = 0, 605E
t

a
= 0, 605 · 193 · 109 · 0, 4

200
= 233, 53 · 106N/m2 = 233, 53MPa (6)

It is the value only 2,6% higher than the accurate value defined in Eq. (5).
The initial buckling problem of the considered shell was solved also numerically

by means of the COSMOS/M [5] system which is based on finite element method.
Due to symmetry only one half of the cylinder was modeled. Appropriate boundary
conditions were adopted on the symmetry plane and on the upper edge on which
the external load was applied.

Calculated values of critical stresses and corresponding buckling modes are pre-
sented in the Tab. 1.

Table 1 Critical stresses and buckling modes

No. of the mode 1 2 3 4 5
σcr[MPa] 228,6 232,3 233,7 235,0 236,5
m, n 8, 1 13, 3 16, 5 18, 7 19, 7

The consistency with the analytical solution in respect to critical pressure value
and the buckling mode is pretty good.

3. Checking of the buckling limit state of cylindrical shells according to
design recommendations

The presented below procedure is consistent with the clause 8.5 of the code EN
1993–1–6:2007 [3] and the chapter 10 of European design recommendations [4].
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At the first step of this procedure the dimensionless length parameter ω is cal-
culated:

ω =
l√
rt

=
400√

200 · 0, 4
= 44, 72 > 1, 7 (7)

0, 5
r

t
= 0, 5

200
0, 4

= 250 (8)

Because ω lays in the interval 1.7 < ω < 250, it means that the considered shell is
the cylinder of intermediate length. Hence Cx = 1.0.

The elastic critical meridional buckling stress will be calculated from the formula
(cf. Eq. (6)):

σx,Rcr = 0, 605ECx
t

r
= 0, 605 · 193000 · 1, 0 · 0, 4

200
= 233, 53MPa (9)

The relative shell slenderness parameter in longitudinal direction is expressed by
the formula:

λx =

√
fy,k

σx,Rcr
=

√
241

233, 53
= 1, 016 (10)

where fy,k is the yield stress of the applied steel.
Let us adopt the fabrication tolerance quality class C (normal quality). Hence,

the fabrication tolerance quality parameter Q = 16.
We can calculate now the elastic imperfection reduction factor:

αx =
0, 62

1 + 1, 91
(

1
Q

√
r
t

)1,44 =
0.62

1 + 1, 91
(

1
16

√
200
0,4

)1,44 = 0, 151 (11)

Let us adopt recommended values of the squash limit relative slenderness λxo, the
plastic range factor β and the interaction exponent η: λx0 = 0, 2, β = 0, 6, η = 1, 0.

Hence, the plastic limit relative slenderness λx,p =
√

αx

1−β =
√

0,151
1−0,6 = 0, 615.

The case λx > λx,p takes place, and hence, the buckling reduction factor

χx =
αx

λ2
x

=
0, 151
1, 0162

= 0, 147 (12)

The characteristic value of critical stresses we will obtain from the formula:

σx,Rk = χxfy,k = 0.147 · 241 = 35, 38MPa (13)

and the design value from the relationship

σx,Rd =
σx,Rk

γM1
=

35, 38
1, 1

= 32, 16MPa (14)

It is the value sevenfold smaller than the critical value which follows from the
solution of initial buckling problem. This significant reduction is result of high
imperfection sensitivity of longitudinally compressed cylinders. The presented here
design procedure of course takes this fact into account.
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4. Experimental investigations of resistance of compressed cylindrical
shells

The test rig, on which the compression of steel cylindrical shells were investigated,
was shown in the Fig. 5. The compressive load was transmitted by the rigid plate
and the steel hinge attached to the upper traverse of hydraulic strength machine.
Such a loading method guarantees the uniform distribution of the load on the whole
edge at least at the initial state of the loading process.

The shell was very flexible. To preserve the ideal shape of cross-section, on
both edges of cylinders addition internal wheels made of thin laminated plastic
were placed inside cylinders and attached to its walls. External diameters of these
wheels were equal to internal diameters of examined steel cylinders.

Three cylinders of the same dimensions but different inevitable and unknown
geometrical imperfections were tested. Maximum compressing loads and corre-
sponding critical stresses were presented in the Table 2. The exemplary plot the
load versus displacements of the upper edge of the cylinder relationship was shown
in Fig. 6. The sudden drop of load was observed at the instant of buckling of the
upper part of the shell. The deformation mode at the stage of the total resistance
exhaustion is well visible in the Fig. 5.

Table 2 Critical forces and corresponding critical stresses

Cylinder 1 Cylinder 2 Cylinder 3
Fcr [kN] 15,5 32,1 27,0
σcr [MPa] 61,7 127,4 107,5

Figure 5 The test rig. The collapse of the tested cylinder
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5. Final remarks

The buckling criterion is the most decisive as far as the resistance of a compressed,
flexible, slender cylindrical shell is concerned. The critical load obtained as a result
of solution of initial buckling problem can not be the basis of buckling resistance
assessment of the shell. The critical load obtained in such a way should be sig-
nificantly reduced due to presence of unavoidable geometrical imperfections. The
manner in which this reduction should be accomplished is presented in code [3] and
in design recommendations [4] published in 2008 by ECCS (European Convention
for Constructional Steelwork).

Figure 6 The compressive load versus the upper edge displacement for the cylinder no. 3

The accurateness and the engineering safety of this approach was confirmed by tests
which were performed on slender cylinders made of stainless steel. In all performed
tests the registered resistance was higher than the predictions resulting from codes
and design recommendations. It means that the procedure of resistance assessment
recommended in [4] works correctly and should be used by designers of tanks and
silos.
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