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The object of considerations are thin linear–elastic Kirchhoff–Love–type circular cylin-
drical shells having a micro–periodic structure along one direction tangent to the shell
midsurface. Shells of this kind are called uniperiodic. The aim of this paper is twofold.
First, we formulate an averaged non–asymptotic model for the analysis of dynamical
stability of periodic shells under consideration, which has constant coefficients and takes
into account the effect of a cell size on the overall shell behavior. This model is derived
employing the tolerance modeling procedure. Second, we apply the obtained model to
derivation of frequency equations being a starting point in the analysis of dynamical
shell stability. The effect of the microstructure length on these frequency equations is
discussed. The system of two the second–order ordinary differential frequency equations
being a certain generalization of the known Mathieu equation is obtained. This system
reduces to the Mathieu equation provided that the length–scale effect is neglected. More-
over, in the framework of the tolerance model proposed here the new additional higher–
order free vibration frequencies and the new additional higher–order critical forces are
derived. These frequencies and critical forces cannot be obtained from the asymptotic
models commonly used for investigations of the shell stability.

Keywords: Micro–periodic cylindrical shells, dynamical stability, mathematical mod-
elling, length–scale effect

1. Introduction

Thin linear–elastic Kirchhoff–Love–type cylindrical shells with a periodically inho-
mogeneous structure along one direction tangent to the shell midsurface are ana-
lyzed. By periodic inhomogeneity we shall mean periodically variable shell thick-
ness and/or periodically variable inertial and elastic properties of the shell material.
Shells of this kind are termed uniperiodic. As an example we can mention cylin-
drical shells with periodically spaced families of stiffeners as shown in Fig. 1. The
period of inhomogeneity is assumed to be very large compared with the maximum
shell thickness and very small as compared to the midsurface curvature radius as
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well as the smallest characteristic length dimension of the shell midsurface.
Because properties of such shells are described by highly oscillating and non-

continuous periodic functions, the exact equations of the shell theory are too com-
plicated to apply to investigations of engineering problems. That is why a lot of
different approximate modeling methods for shells of this kind have been proposed.
Periodic cylindrical shells (plates) are usually described using homogenized models
derived by means of asymptotic methods, cf. [2, 4, 9]. Unfortunately, in models of
this kind the effect of a cell size (called the length–scale effect) on the overall shell
behavior is neglected.

The periodically densely stiffened shells are also modeled as homogeneous or-
thotropic structures, cf. [1, 5, 6]. The orthotropic model equations with coefficients
independent of the period length cannot be used to the analysis of phenomena
related to the existence of microstructure length–scale effect (e.g. the dispersion
of waves, the occurrence of additional higher–order free vibration frequencies and
higher-order critical forces).

In order to analyze the length–scale effect in dynamics or/and stability prob-
lems, the new averaged non–asymptotic models of thin cylindrical shells with a
periodic micro–heterogeneity either along two directions tangent to the shell mid-
surface (biperiodic structure) or along one direction (uniperiodic structure) have
been proposed by Tomczyk in a series of papers, e.g. [14, 15, 16, 17, 18, 19, 23],
and also in the books [20, 21, 22]. These, co called, the tolerance models have been
obtained by applying the non–asymptotic tolerance averaging technique, proposed
and discussed in the monographs [24, 25, 26], to the known governing equations of
Kirchhoff–Love theory of thin elastic shells (partial differential equations with func-
tional highly oscillating non–continuous periodic coefficients). Contrary to starting
equations, the governing equations of the tolerance models have coefficients which
are constant or slowly–varying and depend on the period length of inhomogene-
ity. Hence, these models make it possible to investigate the effect of a cell size on
the global shell dynamics and stability. This effect is described by means of cer-
tain extra unknowns called fluctuation amplitudes and by known fluctuation shape
functions which represent oscillations inside the periodicity cell. Moreover, the tol-
erance models describe selected problems of the shell micro–dynamics, cf. [22, 23].
It means that contrary to equations derived by using the asymptotic homogenized
methods, the tolerance model equations make it possible to investigate the micro–
dynamics of periodic shells independently of their macro–dynamics. In the papers
and books, mentioned above, the applications of the proposed models to analysis
of special problems dealing with dynamics and stationary stability of uniperiodic
shells as well as dynamics and dynamical stability of biperiodically densely stiffened
cylindrical shells have been presented. It was shown that the length–scale effect
plays an important role in these problems and cannot be neglected.

In this paper the influence of a cell size on the dynamic stability of uniperiodically
densely stiffened cylindrical shells will be analyzed. It has to be emphasized that
the non–asymptotic tolerance models of shells with uni– and biperiodic structure
have to be led out independently, because they are based on different modeling
assumptions. The governing equations for uniperiodic shells are more complicated.
It means that contrary to the asymptotic approach, the uniperiodic shell is not a
special case of biperiodic shell.
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The application of the tolerance averaging technique to the investigations of
selected dynamical and/or stability problems for periodic plates can be found in
many papers, e.g. in [8] and [3], where stability of Kirchhoff-type plates and of
Hencky–Bolle–type plates is analyzed, respectively, in [7] and [12], where dynamics
of Kirchhoff–type plates and of wavy–type plates is investigated, respectively. For
review of application of the tolerance averaging technique to the modeling of differ-
ent periodic and also non–periodic structures the reader is referred to [24, 25, 26].
The aim of this contribution is three–fold:

• First, to formulate a new mathematical non–asymptotic model for the analysis
of parametric vibrations and dynamical stability of uniperiodically stiffened
cylindrical shells. This model will be derived by applying a new approach to
the tolerance modeling of micro–heterogeneous media proposed by Woźniak in
[26].

• Second, to formulate an asymptotic model in which the length–scale effect is
neglected. This model will be derived by applying the consistent asymptotic
modeling proposed by Woźniak in [26].

• Third, to apply the derived models to investigate the effect of a microstruc-
ture size on the frequency equation being a starting point in the analysis of
parametric vibrations and dynamical stability of periodic shells under consid-
eration

It is well known that stability problems of shells being homogeneous or weakly
heterogeneous have to be investigated by using the geometrically nonlinear shell
theory, cf. [5, 13]. However, in the case of the highly heterogeneous structures con-
sidered here (i.e. densely stiffened shells), which are described by using continuum
models, we are often interested in the upper state of critical forces and hence we
can use the geometrically linear stability theory for thin linear–elastic cylindrical
Kirchhoff–Love–type shells.

The periodic cylindrical shells, being object of considerations in this paper, are
widely applied in civil engineering, most often as roof girders and bridge girders.
They are also applied as housings of reactors and tanks. The periodic cylindrical
shells having small length dimensions are widely used as elements of air–planes,
ships and machines.

In the subsequent section the basic denotations, preliminary concepts and start-
ing equations will be presented.

2. Preliminaries

In this paper we investigate linear–elastic thin circular cylindrical shells. The shells
are reinforced by families of longitudinal ribs, which are periodically and densely
distributed in circumferential direction. Shells of this kind are termed uniperiodic.
At the same time, these shells have constant structure in an axial direction. Example
of such shell is shown in Fig. 1.

In order to describe the shell geometry define Ω̃ = (0, L1) × (0, L2) as a set of
points (x1, x2) in R2; x1, x2 being the Cartesian orthogonal coordinates parametriz-
ing region Ω̃ ⊂ R2. Let O x̄1x̄2x̄3 stand for a Cartesian orthogonal coordinate sys-
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tem in the physical space E3. Points of E3 will be denoted by x̄ ≡ (x̄1, x̄2, x̄3). A
cylindrical shell midsurface M is given by its parametric representation

M ≡
{
x̄ ∈ E3 : x̄ = r̄

(
x1, x2

)
,
(
x1, x2

) ∈ Ω̃
}

where r̄(·) is the smooth function such that

∂ r̄/∂x1 · ∂ r̄/∂x2 = 0 ∂ r̄/∂x1 · ∂ r̄/∂x1 = 1 ∂ r̄/∂x2 · ∂ r̄/∂x2 = 1

It means that on M we have introduced the orthonormal parametrization and
hence L1, L2 are length dimensions of M . It is assumed that x1 and x2 are coor-
dinates parametrizing the shell midsurface along the lines of its principal curvature
and along its generatrix, respectively, cf. Fig. 1.
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Figure 1 A fragment of periodically stiffened cylindrical shell

Subsequently, sub– and superscripts α, β,. . . run over sequence 1, 2 and are related
to midsurface parameters x1, x2; summation convention holds. The partial differen-
tiation related to xα is represented by ∂α. Moreover, it is denoted ∂α...δ ≡ ∂α...∂δ.
Differentiation with respect to time coordinate t ∈ [t0, t1] is represented by the
overdot. Denote by aαβ and aαβ the covariant and contravariant midsurface first
metric tensors; respectively. For the introduced parametrization aαβ = aαβ = δαβ

are the unit tensors.
We define a bounded domain Ω× Ξ by means of Ω = (0, L1) and Ξ = (0, L2)×

[t0, t1] as well as we shall denote x ≡ x1 ∈ (0, L1) and ξ ≡ x2 ∈ (0, L2).
Let d(x) and r stand for the shell thickness and the constant midsurface curva-

ture radius, respectively. We define λ as a period of the stiffened shell structure in
x ≡ x1–direction, which represents here the distance between axes of two neighbour-
ing stiffeners belonging to the same family, cf. Fig. 1. The period λ satisfies con-
ditions: λ/dmax >> 1, λ/r << 1 and λ/L1 << 1. We also assume that L2 > L1

and hence λ/L2 << 1. The basic cell ∆ and the cell distribution (Ω, ∆) assigned
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to Ω = (0, L1) are defined by ∆ ≡ [−λ/2, λ/2], (Ω,∆) ≡ {∆(x) ≡ x + ∆, x ∈ Ω̄}.
Setting z ≡ z1 ∈ [−λ/2, λ/2], we assume that the cell ∆ has a symmetry axis for
z = 0. It means that inside the cell, the geometrical, elastic and inertial properties
of the stiffened shell are described by symmetric (i.e. even) functions of argument
z. At the same time, these functions are independent of argument ξ ≡ x2.

Denote by uα = uα(x, ξ, t), w = w(x, ξ, t), x ∈ Ω, (ξ, t) ∈ Ξ, the midsurface shell
displacements in directions tangent and normal to M , respectively. Elastic prop-
erties of the shell are described by shell stiffness tensors Dαβγδ(x), Bαβγδ(x). Let
µ(x) stand for a shell mass density per midsurface unit area. We denote by N̄αβ(t)
the time–dependent compressive membrane forces. In the problem considered here
the external forces will be neglected.

It is assumed that the behavior of the stiffened shell under consideration is
described by the action functional

A(uα, w) =

L1∫

0

L2∫

0

t1∫

t0

L(x, ∂βuα, u̇α, ∂αβw, ∂αw, w, ẇ)dtdξdx (1)

where lagrangian L(x, ∂βuα, u̇α, ∂αβw, ∂αw, w, ẇ) is highly oscillating function with
respect to x and has the well-known form, cf. [6]

L =
1
2
(Dαβγδ∂βuα∂δuγ +

2
r
Dαβ11w∂βuα +

1
r2

D1111ww

(2)
+Bαβγδ∂αβw∂γδw + N̄αβ(t)∂αw∂βw − µaαα(u̇α)2 − µẇ2)

The principle of stationary action applied to A leads to the following system of
Euler–Lagrange equations

∂β
∂L

∂(∂βuα)
+

∂

∂t

∂L

∂u̇α
= 0

(3)

−∂αβ
∂L

∂(∂αβw)
+ ∂α

∂Lλ

∂(∂αw)
− ∂L

∂w
+

∂

∂t

∂L

∂ẇ
= 0

After combining (3) with (2) the above system can be written in the form

∂β(Dαβγδ∂δuγ) + r−1∂β(Dαβ11w) = µaααüα

(4)
r−1Dαβ11∂βuα + ∂αβ(Bαβγδ∂γδw) + r−2D1111w − N̄αβ∂αβw = −µẅ

It can be observed that equations (4) coincide with the well–known governing equa-
tions of simplified Kirchhoff–Love second–order theory of thin elastic shells, cf. [5].
In the above equations the displacements uα(x, ξ, t), w(x, ξ, t) are the basic un-
knowns. For periodic shells coefficients of lagrangian L and hence also of equations
(4) are highly oscillating non–continuous functions depending on x with a period λ.
That is why equations (4) cannot be directly applied to investigations of engineer-
ing problems. Our aim is to ”replace” these equations by equations with constant
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coefficients depending on the microstructure size. To this end the tolerance mod-
elling technique given by Woniak in [26] will be applied. To make the analysis more
clear, in the next section we shall outline the basic concepts and the main assump-
tions of the tolerance averaging approach and of the consistent asymptotic modeling,
following the book [26].

3. Modeling Concepts and Assumptions

Following the monograph [26], we outline below the basic concepts and assumptions
which will be used in the course of modeling procedure.

3.1. Basic concepts

The fundamental concepts of the tolerance modeling are those of tolerance (deter-
mined by tolerance parameter δ), cell distribution, tolerance periodic function and
its two special cases: slowly–varying and highly–oscillating functions. The tolerance
approach is based on the notion of the averaging of tolerance periodic function.

• The main statement of the modelling procedure is that every measurement as
well as numerical calculation can be realized in practice only within a certain
accuracy defined by tolerance parameter δ being a positive constant.

• For the shells discussed here, the concept of cell distribution (Ω, ∆) assigned
to Ω = (0, L1) has been introduced in the previous Section.

• A bounded integrable function f(x) defined on Ω̄ = [0, L1] (which can also
depend on ξ ∈ [0, L2] and t as parameters) is called tolerance periodic with
respect to cell ∆ and tolerance parameter δ, if roughly speaking, its values in
an arbitrary cell ∆(x) can be approximated, with sufficient accuracy, by the
corresponding values of a certain ∆–periodic function f̃(x, z), z ∈ ∆(x), x ∈
Ω̄. Function f̃ is a ∆–periodic approximation of f on ∆(x). This condition
has to be fulfilled by all derivatives of f up to the R–th order; i.e. by all its
derivatives which occur in the problem under consideration. In this case we
shall write f ∈ TPR

δ (Ω, ∆).

• A continuous bounded diferentiable function v(x) defined on Ω̄ = [0, L1]
(which can also depend on ξ ∈ [0, L2] and t as parameters) is called slowly-
varying with respect to cell ∆ and tolerance parameter δ, if v ∈ TPR

δ (Ω,∆)
and its periodic approximation ṽ(x, z), z ∈ ∆(x), x ∈ Ω̄ in ∆(x) together
with periodic approximations of its derivatives up to the R–th order (i.e. all
its derivatives which occur in the problem under consideration) are constant
functions in arbitrary periodicity cell ∆(x); we shall write v ∈ SV R

δ (Ω,∆).

• A λ–periodic function h(·) defined on Ω̄, which is continuous together with its
derivatives up to the (R−1) order and has either continuous or a piecewise con-
tinuous bounded derivative of the R–th order, is called the highly–oscillating
function with respect to cell ∆ and tolerance parameter δ,

h ∈ HOR
δ (Ω, ∆) ⊂ TPR

δ (Ω, ∆)

if it depends on λ and satisfies conditions:
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(a) (∀v(x) ∈ SV R
δ (Ω,∆)) (f = hv ∈ TPR

δ (Ω, ∆)) ,

(b) ∂k
z f̃(x, z) = ∂k

z h(z) v(x)
for every z ∈ ∆(x), x ∈ Ω, k = 0, 1, .., R,

(c) ∂k
z h ∈ O(λR−k)), k = 0, 1, .., R,

(d) 1
λ

λ/2∫
−λ/2

µ(z)h(z)dz = 0, z ∈ ∆(x),

for µ being a certain positive valued λ–periodic function defined on Ω̄,

(e) 1
λ

λ/2∫
−λ/2

∂k
z h(z)dz = 0, z ∈ ∆(x), x ∈ Ω, k = 1, .., R,

where we have introduced denotations
∂k

z f̃(x, z) ≡ ∂kf̃(x, z) /∂zk, k = 0, 1, .., R, ∂0
z f̃(x, z) ≡ f(x, z)

and
∂k

z h(z) ≡ ∂kh(z) /∂zk, k = 0, 1, .., R, ∂0
zh(z) ≡ h(z).

By the averaging of tolerance periodic function
f(x) ∈ TP 0

δ (Ω, ∆), x ∈ Ω̄ = [0, L1],
which can also depend on ξ ∈ [0, L2] and t as parameters, we shall mean function

< f > (x) ≡ 1
λ

x+λ/2∫

x−λ/2

f̃(x, z)dz z ∈ ∆(x), x ∈ Ω̄ (5)

where f̃(x, z) is a periodic approximation of f(x) in ∆(x) = [x − λ/2, x + λ/2].
For function f(x) ∈ TPR

δ (Ω,∆), the above formula also holds for derivatives of f
up to the R–th order, i.e. for all its derivatives which occur in the problem under
consideration. It can be seen that if f is a periodic function then f̃ is independent
of x and < f > is constant.

It follows that if h(z) ∈ HO0
δ(Ω, ∆) and v(x) ∈ SV 0

δ (Ω, ∆) then

< v > (x) ≡ 1
λ

x+λ/2∫

x−λ/2

v(x)dz = v(x), z ∈ ∆(x), x ∈ Ω̄ (6)

< vh > (x) ≡ 1
λ

x+λ/2∫

x−λ/2

h(z)dz v(x), z ∈ ∆(x), x ∈ Ω̄ (7)

For functions v(x) ∈ SV R
δ (Ω, ∆) and f = vh ∈ TRR

δ (Ω,∆), where h(z) ∈ HOR
δ (Ω,W ),

the above formulae also hold for derivatives of v and f up to the R-th order.
On passing from tolerance averaging to the consistent asymptotic averaging we

retain only the concept of highly–oscillating function. In the asymptotic approach
we deal with mean (constant) value < f > of ∆–periodic function f(·) defined by

< f >≡ 1
λ

x+λ/2∫

x−λ/2

f(z)dz , z ∈ ∆(x), x ∈ Ω̄ (8)
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3.2. Modeling assumptions

The fundamental assumption imposed on the lagrangian under consideration in the
framework of the tolerance averaging approach is called the micro–macro decompo-
sition. It states that the displacement fields occurring in this lagrangian have to be
the tolerance periodic functions in x. Hence, they can be decomposed into unknown
averaged displacements being slowly–varying functions in x and fluctuations repre-
sented by known highly–oscillating functions called fluctuation shape functions and
by unknown fluctuation amplitudes being slowly–varying in x.

The fundamental assumption imposed on the lagrangian under consideration in
the framework of the consistent asymptotic averaging approach is called the con-
sistent asymptotic decomposition. It states that the displacement fields occurring
in this lagrangian have to be replaced by families of fields depending on small pa-
rameter ε = 1/m, m = 1, 2, ... and defined in an arbitrary cell. These families of
displacements are decomposed into averaged part described by unknown functions
being continuously bounded in Ω̄ and highly–oscillating part depending on ε. This
highly–oscillating part is represented by known fluctuation shape functions and by
unknown functions being continuously bounded Ω̄.

For details the reader is referred to [26] and also to [24, 25].

4. Tolerance Model

The tolerance modeling procedure for Euler–Lagrange equations (3) is realized in
two steps.

The first step is the tolerance averaging of action functional (1). To this end let
us introduce two systems of linear independent highly–oscillating functions, called
the fluctuation shape functions, being λ–periodic in x:

ha(x) ∈ HO1
δ(Ω, ∆) a = 1, .., n

and
gA(x) ∈ HO2

δ(Ω,∆) A = 1, .., N

These functions are assumed to be known in every problem under consideration.
They have to satisfy conditions:

ha ∈ O(λ) λ∂1h
a ∈ O(λ) gA ∈ O(λ2) λ∂1g

A ∈ O(λ2)
λ2∂11g

A ∈ O(λ2) < µ ha >=< µ gA >= 0

and
< µ hahb >=< µ gAgB >= 0 for a 6= b, A 6= B

where µ(·) is the shell mass density being a λ–periodic function with respect to x.
In dynamic problems, functions ha(x), gA(x) represent either the principal modes of
free periodic vibrations of the cell ∆(x) or physically reasonable approximation of
these modes. Hence, they can be obtained as solutions to certain periodic eigenvalue
problems describing free periodic vibrations of the cell, cf. [21]. Because of these
functions are periodic in x with a period λ we can restrict their domain (0, L1) to
arbitrary cell ∆(x) = [x − λ/2, x + λ/2] with center at x. Bearing in mind the
symmetry of the cell geometry and symmetric distribution of the material properties
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inside the cell we assume that ha(z) and gA(z), z ∈ [−λ/2, λ/2], are respectively
odd and even functions of z.

Now, we have to introduce the micro–macro decomposition of displacements
uα(x, ξ, t) ∈ TP 1

δ (Ω, ∆), w(x, ξ, t) ∈ TP 2
δ (Ω, ∆), x ∈ Ω, (ξ, t) ∈ Ξ, which in the

problem under consideration is assumed in the form

uα(x, ξ, t) = uhα(x, ξ, t) = u0
α(x, ξ, t) + ha(x)Ua

α(x, ξ, t) , a = 1, ..., n

(9)
w(x, ξ, t) = wg(x, ξ, t) = w0(x, ξ, t) + gA(x)WA(x, ξ, t) , A = 1, ..., N

where

u0
α(x, ξ, t), Ua

α(x, ξ, t) ∈ SV 1
δ (Ω, ∆) ⊂ TP 1

δ (Ω, ∆)
(10)

w0(x, ξ, t), WA(x, ξ, t) ∈ SV 2
δ (Ω,∆) ⊂ TP 2

δ (Ω, ∆)

and where summation convention over a and A holds. Functions u0
α, w0, called

averaged variables, and functions Ua
α,WA, called fluctuation amplitudes, are the

new unknowns being slowly–varying in x.
Due to the fact that uhα(·, ξ, t) ∈ TP 1

δ (Ω, ∆) and wg(·, ξ, t) ∈ TP 2
δ (Ω, ∆) there

exist periodic approximations of these functions and of their pertinent derivatives
in every ∆(x).

Bearing in mind properties of the slowly–varying and highly–oscillating func-
tions, cf. Section 3 of this paper or a book [26], the periodic approximations of
uhα(·, ξ, t), ∂βuhα(·, ξ, t) and u̇hα(·, ξ, t) in ∆(x), x ∈ Ω̄, have the form

ũhα(x, z, ξ, t) = u0
α(x, ξ, t) + ha(z)Ua

α(x, ξ, t)
∂1ũhα(x, z, ξ, t) = ∂1u

0
α(x, ξ, t) + ∂1h

a(z)Ua
α(x, ξ, t)

∂2ũhα(x, z, ξ, t) = ∂2u
0
α(x, ξ, t) + ha(z)∂2U

a
α(x, ξ, t)

˙̃uhα(x, z, ξ, t) = u̇0
α(x, ξ, t) + ha(z)U̇a

α(x, ξ, t)

(11)

for every x ∈ Ω̄, almost every z ∈ ∆(x) and every (ξ, t) ∈ Ξ.
The periodic approximations of wg(·, ξ, t), ∂αwg(·, ξ, t), ∂αβwg(·, ξ, t) and ẇg(·, ξ, t)

in ∆(x), x ∈ Ω̄, have the form

w̃g(x, z, ξ, t) = w0(x, ξ, t) + gA(z)WA(x, ξ, t) ,
∂1w̃g(x, z, ξ, t) = ∂1w

0(x, ξ, t) + ∂1g
A(z)WA(x, ξ, t)

∂2w̃g(x, z, ξ, t) = ∂2w
0(x, ξ, t) + gA(z)∂2W

A(x, ξ, t)
∂11w̃g(x, z, ξ, t) = ∂11w

0(x, ξ, t) + ∂11g
A(z)WA(x, ξ, t)

∂12w̃g(x, z, ξ, t) = ∂21w̃g = ∂12w
0(x, ξ, t) + ∂1g

A(z)∂2W
A(x, ξ, t)

∂22w̃g(x, z, ξ, t) = ∂22w
0(x, ξ, t) + gA(z)∂22W

A(x, ξ, t)
˙̃wg(x, z, ξ, t) = ẇ0(x, ξ, t) + gA(z)ẆA(x, ξ, t)

(12)

for every x ∈ Ω̄, almost every z ∈ ∆(x) and every (ξ, t) ∈ Ξ.
Setting uhα ≡ uα, wg ≡ w, we obtain from (2) lagrangian
Lhg(x, ∂βuhα, u̇hα, ∂αβwg, ∂αwg, wg, ẇg), x ∈ Ω̄
Since Lhg is highly oscillating with respect to x then there exists a periodic

approximation
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L̃hg(z, ∂βũhα, ˙̃uhα, ∂αβw̃g, ∂αw̃g, w̃g, ˙̃wg), z ∈ ∆(x)
of Lhg in every ∆(x). Substituting the right hand sides of approximations (11),

(12) into L̃hg and using tolerance averaging formula (5) with (6), (7), we arrive
at the tolerance averaging of Lhg in ∆(x) under micro–macro decomposition (9).
Introducing the extra approximation 1 + λ/r ≈ 1, the obtained result has the form

< Lhg > (∂βu0
α, ∂2U

a
α, Ua

α, u̇0
α, U̇a

α, ∂αβw0, ∂βw0, w0, ∂22W
A, ∂2W

A,WA, ẇ0, ẆA)

=
1
2
[< Dαβγδ > ∂βu0

α∂δu
0
γ + 2 < Dαβγ1∂1h

a > ∂βu0
αUa

γ

+ < Dα11γ∂1h
a∂1h

b > Ua
γ U b

α + < Dα22γhahb > ∂2U
b
γ∂2U

a
α

+2r−1[< Dαβ11 > ∂βu0
αw0+ < Dα111∂1h

a > w0Ua
α]

+r−2 < D1111 > w0w0+ < Bαβγδ > ∂αβw0∂γδw
0

+2(< Bαβ11∂11g
A > ∂αβw0WA + < Bαβ22gA > ∂αβw0∂22W

A (13)

+< B1122gA∂11g
B > ∂22W

BWA) + 4< B1212∂1g
A∂1g

B > ∂2W
A∂2W

B

+ < B1111∂11g
A∂11g

B > WAWB + < B2222gAgB > ∂22W
A∂22W

B

+N̄αβ∂αw0∂βw0 + 2N̄α2 < gA > ∂αw0∂2W
A + N̄22< gAgB > ∂2W

A∂2W
B)

−N̄11< ∂1g
A∂1g

B > WAWB− < µaαα(u̇0
α)2 > − < µ(ẇ0)2 >

−< µhahb >aααU̇a
αU̇ b

α −< µgAgB >ẆAẆB ]

Functional

Ahg(u0
α, Ua

α, w0,WA) =

L1∫

0

L2∫

0

t1∫

t0

< Lhg >dtdξdx (14)

where < Lhg > is given by (13), is called the tolerance averaging of functional
A(uα, w) defined by (1) under decomposition (9). The underlined terms in (13)
depend on microstructure length parameter λ.

The second step in the tolerance modeling of Euler–Lagrange equations (3) is
to apply the principle of stationary action to Ahg given above.

The principle of stationary action applied to Ahg leads to the following system
of equations for u0

α, w0, Ua
α,WA as the basic unknowns

∂β
∂ < Lhg >

∂(∂βu0
α)

+
∂

∂t

∂ < Lhg >

∂u̇0
α

= 0

−∂αβ
∂ < Lhg >

∂(∂αβw0)
+ ∂α

∂ < Lhg >

∂(∂αw0)
− ∂ < Lhg >

∂w0
+

∂

∂t

∂ < Lhg >

∂ẇ0
= 0

(15)
∂

∂t

∂ < Lhg >

∂U̇a
α

− ∂ < Lhg >

∂Ua
α

+ ∂2
∂ < Lhg >

∂(∂2Ua
α)

= 0

∂

∂t

∂ < Lhg >

∂ẆA
− ∂ < Lhg >

∂WA
+ ∂2

∂ < Lhg >

∂(∂2WA)
− ∂22

∂ < Lhg >

∂(∂22WA)
= 0

Combining (15) with (16) we arrive finally at the explicit form of the toler-
ance model equations under micro–macro decomposition (9). We shall write these
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equations in the form of constitutive equations

Nαβ =< Dαβγδ > ∂δu
0
γ +

1
r

< Dαβ11 > w0+ < Dαβγ1∂1h
b > U b

γ

Mαβ =< Bαβγδ > ∂γδw
0+ < Bαβ11∂11g

B > WB + < Bαβ22gB >∂22W
B

Haβ =< ∂1h
aDβ1γδ > ∂δu

0
γ +

1
r

< ∂1h
aDβ111 > w0+ < ∂1h

aDβ11γ∂1h
b > U b

γ

−< haDβ22γ hb >∂22U
b
γ (16)

GA =< ∂11g
AB11αβ > ∂αβw0 + < gABαβ22 > ∂αβ22w

0

+ < ∂11g
AB1111∂11g

B > WB + [< ∂11g
AB1122gB >+ < gAB1122∂11g

B >

−4< ∂1g
AB1212∂1g

B >] ∂22W
B + < gAB2222 gB > ∂2222∂WB

and the dynamic equilibrium equations

∂αNαβ− < µ > aββ ü0
β = 0

∂αβMαβ +
1
r
N11 + N̄αβ(t)∂αβw0 + N̄α2(t)< gA >∂α2W

A+ < µ > ẅ0 = 0

< µ hahb >aββ üb
β + Haβ = 0 , a, b = 1, 2, ..., n (17)

< µ gA gB >ẄB + GA − N̄11(t)< ∂1g
A∂1g

B >WB +

N̄α2(t) (< gAgB >∂α2W
B + < gA >∂α2w

0) = 0 , A, B = 1, 2, ..., N.

Equations (16) and (17) together with micro–macro decomposition (9) and physical
reliability conditions (10) constitute the tolerance model for analysis of selected dy-
namic stability problems for uniperiodically stiffened shells under consideration. In
contrast to starting equations (4) with discontinuous, highly oscillating and periodic
coefficients, the tolerance model equations derived here have constant coefficients.
Moreover, some of them depend on microstructure length parameter λ (underlined
terms). Hence, the tolerance model makes it possible to describe the effect of length
scale on the shell behavior.

It has to be emphasized that solutions to selected initial/boundary value prob-
lems formulated in the framework of the tolerance model have a physical sense only
if conditions (10) hold for the pertinent tolerance parameter δ. These conditions
can be also used for the a posteriori evaluation of tolerance parameter δ and hence,
for the verification of the physical reliability of the obtained solutions.

For a homogeneous shell Dαβγδ(x), Bαβγδ(x), µ(x) are constant and because
< µh >=< µg >= 0, we obtain < h >=< g >= 0, and hence

< ∂1h >=< ∂1g >=< ∂11g >= 0

In this case equations (17)1,2 reduced to the well known shell equations of motion
for averaged displacements

u0
α(x, ξ, t), w0(x, ξ, t)

and independently for fluctuation amplitudes

Ua
α(x, ξ, t),WA(x, ξ, t)
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we arrive at a system of equations, which under initial conditions

Ua
α(x, ξ, t0) = WA(x, ξ, t0) = 0

has only trivial solution
Ua

α = WA = 0

Hence, from decomposition (9) it follows that

uα = u0
α, w = w0

It means that equations (9), (16), (17) generated by tolerance averaged Lagrange
function (13) reduce to the starting equations (4) generated by Lagrange function
(2).

5. Asymptotic Model

Asymptotic modeling procedure for Euler–Lagrange equations (3) is realized in two
steps.

The first step is the consistent asymptotic averaging of lagrangian L occurring
in (1). To this end we have to introduce the consistent asymptotic decomposition of
displacements uα = uα(z, ξ, t), w = w(z, ξ, t), z ∈ ∆(x), (ξ, t) ∈ Ξ, in an arbitrary
cell ∆(x), x ∈ Ω

uεα(z, ξ, t) ≡ uα(z/ε, ξ, t) = u0
α(z, ξ, t)

+εha
ε(z)Ua

α(z, ξ, t) a = 1, .., n,

wε(z, ξ, t) ≡ w(z/ε, ξ, t) = w0(z, ξ, t) (18)
+ε2gA

ε (z)WA(z, ξ, t) A = 1, .., N,

z ∈ ∆ε(x), (ξ, t) ∈ Ξ

where summation convention over a and A holds, and

ε = 1/m, m = 1, 2, ..., ∆ε ≡ (−ελ/2, ελ/2), ∆ε(x) ≡ x + ∆ε, x ∈ Ω̄
ha

ε(z) ≡ ha(z/ε) ∈ HO1
δ(Ω, ∆) gA

ε (z) ≡ gA(z/ε) ∈ HO2
δ(Ω, ∆)

Functions ha, gA have been defined in the previous Section; we recall that they
are postulated a priori in every problem under consideration. Unknown functions
u0

α, Ua
α in (18) are assumed to be continuous and bounded together with their first

derivatives. Unknown functions w0, WA in (18) are assumed to be continuous and
bounded together with their derivatives up to the second order.

Moreover u0
α, Ua

α, w0, WA are assumed to be independent of ε. This is the
main difference between the asymptotic approach under consideration and approach
which is used in the known homogenization theory, cf. [4, 9].

Due to the fact that lagrangian L defined by (2) is highly oscillating with respect
to x there exists for every x ∈ Ω̄ lagrangian L̃(z, ∂βuα, u̇α, ∂αβw, ∂αw, w, ẇ) which
constitutes a ∆-periodic approximation of lagrangian L in ∆(x), z ∈ ∆(x). Let L̃ε
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be a family of functions given by

L̃ε = L̃(z/ε, ∂βuεα, u̇εα, ∂αβwε, ∂αwε, wε, ẇε)

=
1
2
[Dαβγδ(z/ε)∂βuεα∂δuεγ +

2
r
Dαβ11(z/ε)wε∂βuεα

(19)

+
1
r2

D1111(z/ε)wεwε + Bαβγδ(z/ε)∂αβwε∂γδwε + N̄αβ(t)∂αwε∂βwε

−µaαα(u̇εα)2 − µ(ẇε)2]

Substituting the right-hand sides of (18) into (19) and taking into account that if
ε → 0 then every continuous and bounded function f(z, ξ, t), z ∈ ∆ε(x), (ξ, t) ∈ Ξ,
tends to function f(x, ξ, t), x ∈ Ω̄, cf. [26], as well as after neglecting terms O(ε),
O(ε2) we arrive at

L̃ε = L̃(z/ε, ∂1u
0
α(x, ξ, t) + ∂1h

a(z/ε)Ua
α(x, ξ, t), ∂2u

0
α(x, ξ, t), u̇0

α(x, ξ, t),
∂11w

0(x, ξ, t) + ∂11g
A(z/ε)WA(x, ξ, t), ∂12w

0(x, ξ, t), ∂21w
0(x, ξ, t), (20)

∂22w
0(x, ξ, t), ∂αw0(x, ξ, t), w0(x, ξ, t), ẇ0(x, ξ, t))

Moreover, if ε → 0 then, by means of a property of the mean value, cf. [9], the
obtained result tends weakly to L0(∂βu0

α, Ua
α, u̇0

α, ∂αβw0, ∂αw0, w0,WA, ẇ0), where

L0 =
1
λ

λ/2∫

−λ/2

L̃(z, ∂βu0
α, Ua

α, u̇0
α, ∂αβw0, ∂αw0, w0,WA, ẇ0)dz, z ∈ ∆(x), x ∈ Ω̄

It follows that

L0(∂βu0
α, Ua

α, u̇0
α, ∂αβw0, ∂αw0, w0,WA, ẇ0)

=
1
2
[< Dαβγδ(z) > ∂βu0

α∂δu
0
γ + 2 < Dαβγ1(z)∂1h

a(z) > ∂βu0
αUa

γ

+ < Dα11γ(z)∂1h
a(z)∂1h

b(z) > Ua
γ U b

α + 2r−1 < Dαβ11(z) > ∂βu0
αw0

+r−2 < D1111(z) > (w0)2+ < Bαβγδ(z) > ∂αβw0∂γδw
0 (21)

+2 < Bαβ11(z)∂11g
A(z) > ∂αβw0WA

+ < B1111(z)∂11g
A(z)∂11g

B(z) > WAWB

+N̄αβ(t)∂αw0∂βw0− < µ > aαα(u̇0
α)2− < µ > (ẇ0)2], z ∈ ∆(x), x ∈ Ω̄

where denotation (8) has been used.
Function L0, given above, is the averaged form of lagrangian L defined by (2)

under consistent asymptotic averaging.
In the framework of consistent asymptotic modelling we introduce the consistent

asymptotic action functional defined by

A0
hg(u

0
α, Ua

α, w0,WA) =

L1∫

0

L2∫

0

t1∫

t0

L0dtdξdx
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where L0 is given by (21).
Under assumption that ∂L0/∂(∂βūα), ∂L0/∂(∂αβw̄) are continuous, from the

principle of stationary action for A0
hg, we obtain the Euler–Lagrange equations

∂β
∂L0

∂(∂βu0
α)

+
∂

∂t

∂L0

∂u̇0
α

= 0

−∂αβ
∂L0

∂(∂αβw0)
+ ∂α

∂L0

∂(∂αw0)
− ∂L0

∂w0
+

∂

∂t

∂L0

∂ẇ0
= 0 (22)

∂L0

∂Ua
α

= 0, a = 1, 2, ..., n,
∂L0

∂WA
= 0, A = 1, 2, ..., N.

Combining (22) with (21) we arrive at the explicit form of the consistent asymptotic
model equations for u0

α(x, ξ, t), w0(x, ξ, t), Ua
α(x, ξ, t), WA(x, ξ, t), x ∈ Ω, (ξ, t) ∈ Ξ

< Dαβγδ > ∂αδu
0
γ + r−1 < Dαβ11 > ∂αw0+ < Dαβγ1∂1h

b > ∂αU b
γ

− < µ > aββ ü0
β = 0

< Bαβγδ > ∂αβγδw
0+ < Dαβ11∂11g

B > ∂αβWB

+r−1 < D11γδ > ∂δu
0
γ + r−2 < D1111 > w0 (23)

+r−1 < D111γ∂1h
b > U b

γ + N̄αβ∂αβw0− < µ > ẅ0 = 0

< ∂1h
aDβ11γ∂1h

b > U b
γ = − < ∂1h

aDβ1γδ > ∂δu
0
γ − r−1 < ∂1h

aDβ111 > w0

< ∂11g
AB1111∂11g

B > WA = − < ∂11g
BB11γδ > ∂γδw

0

It can be observed that we have obtained the linear algebraic equations for extra un-
knowns Ua

α,WA, cf. Eqs (23)3,4. It can be shown that linear transformations G, E
given by Gab

βγ =< ∂1h
aDβ11γ∂1h

b >, EAB =< ∂11g
AB1111∂11g

B >, respectively,
are invertible. Hence, solutions U b

γ , WA to (23)3,4 can be written in the form

U b
γ = −(G−1)bc

γη

[
< ∂1h

cD1ηµϑ > ∂ϑu0
µ +

1
r

< ∂1h
cD1η11 > w0

]

(24)
WA = −(E−1)AB < ∂11g

BB11γδ > ∂γδw
0

where G−1 and E−1 are the inverses of the linear transformations G, E, respec-
tively. Substituting (24) into (23)1,2 and setting

Dαβγδ
h ≡< Dαβγδ > − < Dαβη1 ∂1h

a > (G−1)ab
ηζ < ∂1h

bD1ζγδ >

(25)

Bαβγδ
h ≡< Bαβγδ > − < Bαβ11∂11g

A > (E−1)AB < ∂11g
BB11γδ >

we arrive finally at the following form of Euler–Lagrange equations for u0
α, w0

Dαβγδ
h ∂αδu

0
γ + r−1Dαβ11

h ∂αw0− < µ > aββ ü0
β = 0

(26)

Bαβγδ
h ∂αβγδw

0 + r−1D11γδ
h ∂δu

0
γ + r−2D1111

h w0 + N̄αβ∂αβw0+ < µ > ẅ0 = 0
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Equations (26) have to be considered together with decomposition of

uα(x, ξ, t), w(x, ξ, t) in Ω× Ξ

uα(x, ξ, t) = u0
α(x, ξ, t) + ha(x)Ua

α(x, ξ, t)
(27)

w(x, ξ, t) = w0(x, ξ, t) + gA(x)WA(x, ξ, t) , x ∈ Ω, (ξ, t) ∈ Ξ

with Ua
α,WA given by (24). Contrary to (9), the above formula is not a micro–

macro decomposition since in the consistent asymptotic approach it is not assumed
that functions u0

α, w0, Ua
α,WA are slowly–varying.

Equations (26) together with formula (27) represent the consistent asymptotic
model of Euler–Lagrange equations (4) derived from lagrangian (2). Coefficients
in equations (26) are constant in contrast to coefficients in equations (4) which
are discontinuous, highly oscillating and periodic. The above model is not able to
describe the length–scale effect on the overall shell dynamics and stability being
independent of the microstructure cell size.

The subsequent analysis dealing with a certain dynamical stability problem will
be based on tolerance model equations (16), (17) and consistent model equations
(26).

6. Dynamical Stability of Uniperiodically Stiffened Shells

Now, the tolerance model equations (16), (17) will be applied to derivation of fre-
quency equation being a starting point in the analysis of parametric vibrations
and dynamic stability of periodically stiffened shells under consideration. In order
to evaluate the effect of a cell size on this equation the results obtained from the
tolerance model will be compared with those derived from an asymptotic model
(26).

6.1. Formulation of the problem

The object of considerations is a closed circular cylindrical shell with r, d as its
midsurface curvature radius and its constant thickness, respectively. It means that
now L1 = 2π r. The shell is reinforced by two families of longitudinal stiffeners,
which are periodically and densely distributed in circumferential direction, cf. Fig.
2. The stiffeners of both kinds have constant rectangular cross–sections with A1, A2

as their areas and with I1 ,, I2 as their moments of inertia. The gravity centers of the
stiffener cross-sections are situated on the shell midsurface. Let a1, a2 be the widths
of the ribs. It is assumed that both the shell and stiffeners are made of homogeneous
isotropic materials. Denote by E, ν Young’s modulus and Poisson’s ratio of the shell
material, respectively, and by E1 ,E2 Young’s moduli of the stiffener materials. At
the same time µ0 stands for the constant shell mass density per midsurface unit area
and µ1, µ2 stand for the constant mass densities of the stiffeners per the stiffener
unit length, cf. Fig. 3.

In agreement with considerations in Section 2, we define λ as a period of the
stiffened shell structure in x ≡ x1–direction, which represents the distance between
axes of two neighbouring stiffeners belonging to the same family, cf. Figs 2 and 3.
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Figure 2 A fragment of a shell with two families of uniperiodically spaced stiffeners
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Figure 3 fragment of the stiffened shell cross–section β − β

We recall that the period λ has to satisfy conditions: λ/dmax >> 1, λ/r << 1
and λ/L1 << 1. Moreover, under additional assumption that L2 > L1 the condition
λ/L2 << 1 holds. We also recall that the basic cell ∆ and the cell distribution (Ω,∆)
assigned to Ω = (0, L1) are defined by

∆ ≡ [−λ/2, λ/2] (Ω,∆) ≡ {∆(x) ≡ x + ∆, x ∈ Ω̄}
The basic cell is shown in Fig. 4. Setting z ≡ z1 ∈ [−λ/2, λ/2], we assume that the
cell ∆ has a symmetry axis for z = 0. It means that inside the cell, the geometrical,
elastic and inertial properties of the stiffened shell are described by symmetric (i.e.
even) functions of argument z. At the same time, these functions are independent
of argument ξ ≡ x2

Tensile E1A1, E2A2 and bending E1I1, E2I2 rigidities of the stiffeners are con-
stant. We assume that widths of the ribs a1 , a2 << λ and hence the torsional rigid-
ity of stiffeners can be neglected. The rigidities Dαβγδ

0 , Bαβγδ
0 of the shell (without
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ribs) are also constant and described by: Dαβγδ
0 = DHαβγδ, Bαβγδ

0 = BHαβγδ,
where D = Ed/(1 − ν2), B = Ed3/(12(1 − ν2)), and the nonzero components of
Hαβγδare: H1111 = H2222 = 1, H1122 = H2211 = ν, H1212 = H1221 = H2121 =
H2112 = (1− ν)/2.

The shell under consideration is simply supported on edges ξ = 0, ξ = L2, cf.
[10]. We shall neglect the rotational inertia effect on the dynamics shell behavior.

In agreement with notations introduced in Section 2, we denote by Dαβγδ(x),
Bαβγδ(x) and µ(x) the stiffness tensors and the mass density of the reinforced shell
under consideration, respectively. This periodically densely ribbed shell will be
treated as a non–stiffened shell with a constant thickness d, made of a certain ∆–
periodically non-homogeneous material. The shell’s tensile D2222(·) and bending
B2222(·) rigidities in the axial direction are λ-periodic functions in x, being inde-
pendent of ξ. The remaining components of the shell stiffness tensors are constant
and given by: Dαβγδ = Dαβγδ

0 , Bαβγδ = Bαβγδ
0 . The shell mass density µ(·) is

also a λ-periodic function in x, being independent of ξ.

the symmetry axis
of the cell

a /21 a2 a /21

[- /2, /2]

1x x

z 1z

z

/2/2

Figure 4 The basic cell of the shell under consideration a1, a2 << λ

Inside the cell ∆, functions D2222(z), B2222(z) and µ(z), z ≡ z1 ∈ [−λ/2, λ/2],
take the form

D2222(z) =





D2222
0 = D for z ∈ (−λ/2, λ/2 )− { 0 }

E1A1/2 for z = −λ/2 and z = λ/2
E2A2 for z = 0

B2222(z) =





B2222
0 = B for z ∈ (−λ/2, λ/2 )− { 0 }

E1I1/2 for z = −λ/2 and z = λ/2
E2I2 for z = 0

µ(z) =





µ0 for z ∈ (−λ/2, λ/2 )− { 0 }
µ1/2 for z = −λ/2 and z = λ/2
µ2 for z = 0
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Taking into account definition (5) we obtain for functions D2222(z), B2222(z) and
µ(z), given above, the following averages values

< D2222 >= D + (E1A1 + E2A2)/λ

< B2222 >= B + (E1I1 + E2I2)/λ (28)
< µ >= µ0 + (µ1 + µ2)/λ

In order to analyze the problem of dynamical stability, we assume that the shell
is uniformly compressed in axial direction by the time-dependent forces N̄(t) ≡
N̄22(t); hence N̄12 = N̄21 = N̄11 = 0. Moreover, the forces of inertia in directions
tangential to the shell midsurface will be neglected.

The investigated problem is rotationally symmetric with a period λ/r; hence
u0

1, U
a
1 = 0 and the remaining unknowns u0

2, U
a
2 , w0, WA of the tolerance and asymp-

totic models (but not displacements u2, w in decompositions (9) and (27)!) are only
the functions of ξ–midsurface parameter. Moreover, we will neglect forces of inertia
in an axial direction.

For the sake of simplicity, we shall confine ourselves to the simplest forms of
the tolerance and asymptotic models in which a = n = A = N = 1, taking into
account only one fluctuation shape function h(z) ≡ h1(z) ∈ HO1

δ(Ω,∆), being
antisymmetric on the cell, and only one fluctuation shape function g(z) ≡ g1(x) ∈
HO2

δ(Ω, ∆), being symmetric on the cell. We will take into account the following
approximate forms of these functions: h(z) = λ sin(2πz/λ), g(z) = λ2[cos(2πz/λ)+
c], where constant c is calculated from condition < µg >= 0, cf. [21]. These
functions relate to the smallest eigenvalues of certain periodic eigenvalue problems
on the cell. Hence, they are referred to the lowest natural vibration modes in
directions tangent and normal to the shell midsurface, respectively.

In the sequel denotations U2(ξ, t) ≡ U1
2 (ξ, t), W (ξ, t) ≡ W 1(ξ, t) will be used.

Bearing in mind assumptions given above, the effect of the microstructure size
on dynamic stability of stiffened shell under consideration will be analyzed by using
both the tolerance model given by equations (16), (17) and the asymptotic model
represented by equations (26).

6.2. Analysis in the framework of the tolerance model

Now, the system of tolerance equations (17) is separated into independent equation
for U2(ξ, t):

< D2222h2 > ∂22U2 −D(1− ν)2−1 < (∂1h)2 > U2 = 0

which yields U2(ξ, t) = 0, and the following system of three equations for u0
2(ξ, t),

w0(ξ, t), W (ξ, t)

< D2222 > ∂22u
0
2 + Dν r−1 ∂2w

0 = 0
Dν r−1∂2u

0
2+ < B2222 > ∂2222w

0 + N̄22∂22w
0 + Dr−2w0+ < µ > ẅ0

+λ2 < B2222ḡ > ∂2222W + N̄22λ2 < ḡ > ∂22W = 0
λ2 < B2222ḡ > ∂2222w

0 + N̄22λ2 < ḡ > ∂22w
0 (29)

+λ4 < B2222 (ḡ )2 > ∂2222W − 2B λ2 < (∂1g̃)2 > ∂22W

+B < (∂11g)2 > W + λ4 < µ (ḡ )2 > Ẅ + N̄22λ4 < (ḡ)2 > ∂22W = 0
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where
g̃ = λ−1g, ḡ = λ−2g

Some terms in (29) depend explicitly on microstructure length parameter λ. All
coefficients of equations (29) are constant.

Separating variables ξ and t,the solutions to Eqs.(29) satisfying boundary con-
ditions for the simply supported shell on the edges ξ = 0, ξ = L2 can be assumed
in the form

u0
2(ξ, t) =

∞∑
m=1

TU
m(t) cos(αmξ) w0(ξ, t) =

∞∑
m=1

Tm(t) sin(αmξ)

(30)

W (ξ, t) =
∞∑

m=1

TW
m (t) sin(αmξ) αm = mπ/L2

Substituting (30) into (29), assuming that m = 1 and taking into account that
α λ << 1 , d/λ << 1 and hence neglecting some terms as small compared to
1, then assuming that the compressive axial forces N̄(t) ≡ N22(t) are given as
N̄(t) ≡ N22(t) = N̄b cos(pt), where p is the oscillating frequency of these forces and
N̄b is constant, as well as introducing the following denotations

η̃ ≡< B2222 > +D(r2α4)−1[1−Dν2 < D2222 >−1]
χ̃ ≡ D(rα)−2(1−Dν < D2222 >−1) < ḡ > +α2 < B2222ḡ >

κ̃ ≡ Dr−2(−Dν < D2222 >−1< ḡ >2 + < (ḡ)2 >) + α4 < B2222(ḡ)2 > (31)
ζ̃ ≡ Dr−2(−Dν < D2222 >−1< ḡ > + < ḡ >) + α4 < B2222ḡ >

ω2 ≡ α4 < µ >−1 η̃, ϑ2
∗ ≡ α4 < µ >−1 λ2 χ̃, ω̃2

∗ ≡ ζ̃(λα)−2 < µ(ḡ)2 >−1

ϑ̃2
∗ ≡ (Bλ−4 < (∂11g)2 > +2Bλ−2α2 < (∂1g̃)2 > +κ̃) < µ( ḡ )2 >−1 (32)

Ñcr ≡ α2η̃, S̄cr ≡ χ̃ < ḡ >−1, Ŝcr ≡ ζ̃α−2 < ḡ >−1

N̄∗cr ≡ (Bλ−4 < (∂11g)2 > +2Bλ−2α2 < (∂1g̃)2 > +κ̃)α−2 < (ḡ)2 >−1

we arrive at the system of frequency equations

d2T

dt2
+ ω2

[
1− Nb

Ñcr

cos(pt)
]

T + ϑ2
∗

[
1− Nb

S̄cr
cos(pt)

]
TW = 0

(33)
d2TW

dt2
+ ϑ̃2

∗

[
1− Nb

N̄∗cr
cos(pt)

]
TW + ω̃2

∗

[
1− Nb

Ŝcr

cos(pt)
]

T = 0

In equations (33) the parameter λ is comprised in the new additional higher free
vibration frequencies ϑ2

∗, ϑ̃2
∗, ω̃2

∗ and in the new additional higher critical force N̄∗cr.
In equations (33) we also deal with the lower free vibration frequency ω2 and the
lower static critical forces Ñcr, S̄cr, Ŝcr, which are independent of a cell size λ.

The above system of two the second–order ordinary differential equations for two
unknown functions of time coordinate is a starting point of the analysis of dynamic
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stability of the shell under consideration in the framework of the non–asymptotic
tolerance model. Some parameters of equations (33) depend on the period length λ
and hence they make it possible to investigate the length–scale effect on parametric
vibrations and dynamical stability of periodic shells under considerations. It must
be emphasized that result (33) is a certain generalization of the known Mathieu
equation being the second–order ordinary differential equation, cf. [10]. Neglecting
in (33) the terms with λ the Mathieu equation is obtained. It has to be emphasized
that result (33) can be easily generalized on the case in which we deal with a shell
reinforced by more then two families of stiffeners which are periodically and densely
distributed in circumferential direction.

In order to evaluate the obtained results let us analyze this same problem in
the framework of a model without the length–scale effect, represented by equations
(26)

6.3. Analysis in the framework of the consistent asymptotic model

Under assumptions introduced in Subsection 6.1, equations (26) yield

< D2222 > ∂22u
0
2 + Dν r−1 ∂2w

0 = 0
(34)

Dν r−1∂2u
0
2+ < B2222 > ∂2222w

0 + N̄22∂22w
0 + Dr−2w0+ < µ > ẅ0 = 0

The above model is not able to describe the length–scale effect on the dynamic
shell stability being independent of the period length λ. It is easy to see that
there are not fluctuation amplitudes in model equations (34) derived here. Thus,
from decomposition (27) it follows that u0

2 = U2, w0 = W . Hence the governing
equations (34), with averages < D2222 >, < B2222 > and < µ > given by means of
(28), coincide with the well–known equations of the orthotropic theory for stringer–
stiffened cylindrical shells; see [5].

The solutions to Eqs. (34) can be assumed in the form (30)1,2. Substituting
(30)1,2 into (34) and using denotations introduced in Subsection 6.2, after some
manipulations, the frequency equation of the consistent asymptotic model takes the
form

d2T

dt2
+ ω2[1− Nb

Ñcr

cos(pt)]T = 0 (35)

It has to be observed that all parameters of the above equation are independent
of the cell size. In the framework of the asymptotic model it is not possible to
determine the additional higher free vibration frequencies and the additional higher
critical forces, caused by the periodic structure of the shell. The result (35) ne-
glecting the length-scale effect has a form of the known Mathieu equation, which
describes dynamic stability and parametric vibrations of different structures, cf.
[10].

7. Final Remarks and Conclusions

The new results obtained here lead to the following conclusions and remarks:

• Thin linear–elastic Kirchhoff–Love–type circular cylindrical shells with a pe-
riodically inhomogeneous structure along the circumferential direction are ob-
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jects under consideration. Shells of this kind are termed uniperiodic. As an
example we can mention cylindrical shells with periodically spaced families
of longitudinal stiffeners as shown in Fig.1. Dynamic and stability behavior
of such shells are described by Euler–Lagrange equations (3) generated by
the well known Lagrange function (2). The explicit form of (3), given by
(4), coincides with the governing equations of the simplified Kirchhoff–Love
second–order theory for elastic shells. For periodic shells coefficients of these
equations are highly oscillating non–continuous periodic functions. That is
why the direct application of equations (4) to investigations of specific prob-
lems is non–effective even using computational methods.

• The new mathematical non–asymptotic model for analysis of selected dynamic
and dynamical stability problems for periodic shells under consideration has
been formulated by applying the tolerance modeling procedure given in [26].
The tolerance approach is based on the notions of tolerance parameter, cell
distribution, tolerance periodic function, slowly–varying function and highly–
oscillating function as well as on the concept of the tolerance averaging of a
tolerance periodic function. Following the book [26], the definitions of these
basic notions were outlined in Section 3 of this paper. The fundamental as-
sumption imposed on the lagrangian under consideration in the framework
of the tolerance averaging approach is called the micro–macro decomposition.
It states that the displacement fields occurring in this lagrangian have to
be the tolerance periodic functions in periodicity direction. Hence, they can
be decomposed into unknown averaged displacements being slowly–varying
functions and fluctuations represented by known highly–oscillating functions
called fluctuation shape functions and by unknown slowly–varying fluctuation
amplitudes. The tolerance modeling technique is realized in two steps. The
first step is based on the tolerance averaging of lagrangian (2) under micro–
macro decomposition (9). The resulting tolerance averaged form of lagrangian
(2) is given by (13). In the second step, applying the principle of stationary
action to the tolerance averaged action functional (14) defined by means of
averaged lagrangian (13) we arrive at Euler–Lagrange equations (15). After
combining (15) with (13) we obtain finally the explicit form of the tolerance
model equations under micro–macro decomposition (9). These equations are
written in the form of constitutive relations (16) and dynamic balance equa-
tions (17). Contrary to the “exact” shell equations (4) with highly oscillating
non–continuous periodic coefficients, the obtained tolerance model equations
have constant coefficients which depend on microstructure length parameter
λ. It means that the proposed tolerance model equations describe the effect
of the cell size on the overall shell dynamics and dynamical stability.

• The new mathematical asymptotic model for analysis of selected dynamic
and dynamical stability problems for periodic shells under consideration has
been formulated by applying the new consistent asymptotic modeling proce-
dure given in [26]. This approach is based on the notion of highly–oscillating
function. The fundamental assumption imposed on the lagrangian under con-
sideration in the framework of this approach is called the consistent asymp-
totic decomposition. It states that the displacement fields occurring in the
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lagrangian have to be replaced by families of fields depending on small pa-
rameter ε = 1/m, m = 1, 2, ... and defined in an arbitrary cell. These families
of displacements are decomposed into averaged part described by unknown
functions being continuously bounded in periodicity direction and highly–
oscillating part depending on ε. This highly–oscillating part is represented by
known fluctuation shape functions and by unknown functions being contin-
uously bounded in direction of periodicity. Asymptotic modeling procedure
for Euler–Lagrange equations (3) is realized in two steps. The first step is the
consistent asymptotic averaging of lagrangian (2) under consistent asymptotic
decomposition (18). The resulting averaged form of lagrangian (2) is given
by (21). In the second step, applying the principle of stationary action to
the consistent asymptotic action functional defined by means of averaged la-
grangian (21) we arrive at Euler–Lagrange equations (22). After combining
(22) with (21) we obtain finally the explicit form of the consistent asymptotic
model equations given either by (23) or (26). The resulting equations have to
be considered together with decomposition (27). Coefficients in these equa-
tions are constant. Contrary to the tolerance model, the presented consistent
asymptotic model is not able to describe the length–scale effect on the overall
shell dynamics and stability being independent of the microstructure cell size.

• Taking into account the effect of the microstructure length on a dynamic
stability of the shells under consideration we arrive at the system of two the
second–order ordinary differential frequency equations (33) for the unknown
functions of time coordinate, which can be treated as a certain generalization
of the known Mathieu equation, cf. [10]. This system reduces to the Mathieu
equation provided that the period length λ is neglected. On the contrary,
within the consistent asymptotic model the known Mathieu equation (35) is
obtained.

• In the framework of the tolerance model, proposed here, the fundamental
lower and new additional higher free vibration frequencies as well as the fun-
damental lower and new additional higher critical forces can be derived and
analyzed. The higher free vibration frequencies and the higher critical forces
depend on a cell size and hence cannot be determined applying asymptotic
models commonly used for investigations of the shell stability.

The application of the obtained frequency equations (33) and (35) to evaluation of
the effect of microstructure length parameter λ on parametric vibrations and on
boundaries of dynamical instability regions for periodically stiffened shells under
consideration is reserved for a separate paper.
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[11] Lewiński, T. and Telega, J.J.: Plates, laminates and shells. Asymptotic analysis
and homogenization, Word Scientific Publishing Company, Singapore, 2000.

[12] Michalak, B.: Analysis of dynamic behaviour of wavy–type plates with a mezzo–
periodic structure, Journal of Theoretical and Applied Mechanics, 39, 947–958, 2001.

[13] Pietraszkiewicz, W.: Geometrically nonlinear theories of thin elastic shells, Ad-
vances in Mechanics, 12, 51–130, 1989.

[14] Tomczyk, B.: On the modelling of thin uniperiodic cylindrical shells, Journal of
Theoretical and Applied Mechanics, 41, 755–774, 2003.

[15] Tomczyk, B.: On stability of thin periodically densely stiffened cylindrical shells,
Journal of Theoretical and Applied Mechanics, 43, 427–455, 2005.

[16] Tomczyk, B.: On dynamics and stability of thin periodic cylindrical shells,
Differential Equations and Nonlinear Mechanics, ID 79853, 1–23, 2006.

[17] Tomczyk, B.: On the effect of period lengths on dynamic stability of thin
biperiodic cylindrical shells, Electronic Journal of Polish Agricultural Universities,
Civil Engineering, 9, textbf2006.

[18] Tomczyk, B.: A non–asymptotic model for the stability analysis of thin biperiodic
cylindrical shells, Thin–Walled Structures, 45, 941–944, 2007.

[19] Tomczyk, B.: Vibrations of thin cylindrical shells with a periodic structure, PAMM,
8, 10349–10350, 2008.

[20] Tomczyk, B.: Thin cylindrical shells, in: eds. C. Woniak et al., Thermomechanics
of microheterogeneous solids and structures. Tolerance averaging approach, Part II:
Model equations, Lodz Technical University Press, Lodz, 165–175, 2008.

[21] Tomczyk, B.: Thin cylindrical shells, in: eds. C. Woniak et al., Thermomechanics
of microheterogeneous solids and structures. Tolerance averaging approach, Part III:
Selected problems, Lodz Technical University Press, Lodz, 383–411, 2008.

[22] Tomczyk, B.: On micro–dynamics of reinforced cylindrical shells, in: eds. C. Woźniak
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