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The paper presents analytical and numerical study of externally forced Duffing oscillator
with delayed displacement feedback. By using analytical method, stability lobes for a
linear oscillator with time delay is determined and the fundamental resonance of the
Duffing oscillator with time delay is calculated by means of the multiple scale method.
Next, an influence of delayed displacement feedback on the classical Duffing oscillator is
examined and an effect of cubic nonlinearity on the stability of the regenerative model
of cutting process is analysed.
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1. Introduction

Recent years have provided numerous studies on time delay systems and their appli-
cations in various fields. The delayed state feedback is often used to active control
of mechanical vibrations, specially of nonlinear systems [1]. As shown in [2] time
delay effect can stabilize the unstable periodic motions in linear oscillators and
also can control local bifurcations of nonlinear systems through improving the sta-
bility of periodic motion. Therefore, the time delay systems are more and more
popular not only to control processes but to model various physical phenomena
as well. The delayed state feedback is commonly being made use to model ma-
chining processes with, so called, regenerative effect that is very harmful because
can produced self–excited chatter vibrations [3–10]. Vibrations become one of the
most common limitations for productivity and quality of final surface in milling,
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turning and boring operations with long flexible tools or highly flexible thin-wall
parts. Yao and Chen [11] consider self–excited vibrations of van der Pol–Duffing
oscillator with delayed velocity and displacement feedback. In order to eliminate
the limit cycle, parametric excitation is applied to the oscillator. Next, parametric
excitation is put into a use for stability analysis of the cutting vibrations system
[11]. Similarly, a single and two coupled Duffing–van der Pol system with delayed
displacement feedback is taken into consideration in the paper [12] where stability
and synchronization analysis is performed.

Figure 1 Model of cutting process with regenerative effect (time delay)

This paper deals with a problem of a single Duffing oscillator with time delayed dis-
placement. A cutting process model with regenerative effect and nonlinear stiffness
characteristic can be mentioned as an example of (Fig. 1). In the literature Hu et
al. [13] scrutinized a harmonically forced Duffing oscillator under linear time delay
control. They analysed, together, delayed displacement and velocity feedback by
the multiple scale method. Also, Hu and Wang [2] used the multiple scale method
to examine a Duffing oscillator but only with delayed velocity feedback. Our work
focuses on the influence of Duffing type nonlinearity on behaviour of time delayed
displacement system. Thus, the system under consideration, that is nonlinear, ex-
ternal forced Duffing oscillator with delayed displacement, is governed by a second
order nonlinear differential equation with shifted argument:

x′′(t) + δx′ + ω2
0x(t) + γx(t)3 = α(−µx(t) + x(t− τ)) + f cos(λt) (1)

where, δ is a viscous damping coefficient, ωo means natural frequency of a linear
system, γ – small coefficient representing nonlinear stiffness α – amplitude of delay,
f – amplitude of external force, λ – frequency of external excitation, τ – time delay
and µ is a switching parameter: if µ=1 then term exits and if µ=0 this term
vanishes.

2. Linear and nonlinear model of regenerative chatter

At the beginning let us examine a linear equation with time delay which is popular
to describe cutting process with regenerative effect and can be found in various
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variants in literature [8, 10, 14–17]. Assuming differential equation of motion takes
the linear form:

x′′(t) + δx′ + ω2
0x(t) + γx(t)3 = α(−x(t) + x(t− τ)) (2)

where α in this case can be treated as cutting width. Since, equation (2) is linear
therefore it can be solved analytically. Periodic solutions can be sought in the
classical form:

x(t) = A cos(ωt)

(3)

x(t− τ) = A cos(ωt− ωτ)

or making use of the Laplace transform method. Then the characteristic equation
is obtained as:

s2 = δs+ ω2
0 + α(1− esτ ) = 0 (4)

For asymptotic stability, the equation (4) must yield roots with negative real parts.
Equation (4) is a transcendental algebraic equation on s. The stability depends on
δ, ωo α and the time delay τ . An exact analytical solution of this equation cannot,
in general, be obtained in terms of elementary functions. However from (4) we can
determine following relationships (j=1,2,...) :

τ =
1

ω

(
arctan

−δω

ω2
0 + α− ω2

+ jπ

)
(5)

α =
ω4
0 − δ2ω2 + 2ω2ω2

0 − ω4

2(ω2
0 − ω2)

On the basis of equations (5) the stability boundary can be computed numerically.
For parameters: δ=0.1, ωo =1 they are drawn as, so called, stability lobs diagram
(SLD) in Fig. 2 (continuous line) where angular velocity Ω is defined as:

Ω =
2π

τ
, j = 0, 1, 2, ..., n (6)

Below the stability curve, the solutions are asymptotically stable (decrease to zero),
whereas above the stability lobs the solutions tend to infinity. The system is un-
conditionally asymptotic stable, regardless of Ω when α is less then αcr which can
be calculated as a minimum of function α(ω) provided that:

dα

dω
(7)

Thus, ωcr is:

ωcr =
√

δω0 + ω2
0 (8)

and αcr is expressed as:

αcr =
1

2
δ(δ + 2ω0) (9)

For δ=0.1, ωo =1 the demand αcr =0.105.
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Figure 2 Stability lobs diagram for linear and nonlinear case

The points on the analytical curve (Fig. 2) are the result of numerical integration
of differential equation (2). The situation changes when nonlinearity is added to the
system. For instance when γ=0.25 (f is still equal to 0) the equation (1) is solved
numerically in two cases, first starting form small initial condition x(0)=0.0001
and next from bigger one x(0)=3.5. The former case gives similar results to the
linear model (continuous line in Fig. 2) but in the latest, the unstable region is
wider (dashed line in Fig. 2). Additionally, Fig. 3 demonstrates asymptotic stable
solution starting from small initial conditions (blue trajectory on the phase space)
or the limit cycle for big initial conditions (black trajectory).

Vibrations amplitude, that is the level of limit cycle depends, of course, on time
delay in the way presented in Fig. 4, where the displacement amplitude versus Ω is
drawn for α=0.2.

The cutting width α is a second parameter which influences vibrations in regen-
erative cutting model. In the case of a linear system (γ=0) the increase of α outside
the stability limit, determined by lobs in SLD (Fig. 2), produces amplitude escape
to infinity. While for nonlinear system (γ=0.25) at α =0.110 and Ω =1.3 the super-
critical Hopf bifurcation occurs during increasing α but when α decreases, the jump
of amplitude is visible at α=0.175. Note, that these bifurcation diagrams shows dis-
placement obtained for Poincaré section of x for x’=0, therefore two branches are
observable in Fig. 5 and Fig. 7. The limit cycle with periodic solution is presented
on Poincaré sections in Fig. 6 a. whereas, for α=1.0 more complex, quasi–periodic
motion is obtained (Fig.6 b).
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Figure 3 Phase space for nonlinear system for initial condition x(0)=00.5 (blue) and x(0)=3.5
(black)

Figure 4 Dependence of displacement amplitude vs. angular velocity Ω
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Figure 5 Bifurcation diagram x(α) for Ω=1.3; increasing α(a), decreasing α(b)

Figure 6 Poincar maps for Ω=1.3 and α=0.4 (a), α=1.0 (b)
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Figure 7 Bifurcation diagram x(α) for Ω=2.5; increasing α (a), decreasing α (b)

Figure 8 Poincar maps for Ω=2.5 and α=0.8

Looking at bifurcation diagrams obtained for Ω =2.5 (Fig. 7), one can notice a
transition from stable zero solution to periodic motion (Fig. 8) through subcritical
Hopf bifurcation.

Thus, nonlinearity of the Duffing type gets narrow the stable zero solution region
but it also limits vibrations amplitude to a limit cycle that is a positive aspect from
practical point of view.

3. Duffing oscillator with time delay

In this section the externally forced Duffing oscillator is investigated in variants with
and without time delayed displacement. The former is classical Duffing oscillator,
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the latter can be treated as a example of a regeneration model of a cutting process
with a control system, modelled as external excitation with f amplitude and fre-
quency λ. At the beginning, the system described by Eq. (1) is solved analytically
with the help of the multiple scale method [18]. A fast scale and a slow scale of
time are introduced, then a solution in the first order approximation is sought in
the form:

x(t) = x0(T0, T1) + ϵx1(T0, T1)

(10)

x(t− τ) = xτ = x0τ (T0, T1) + ϵx1τ (T0, T1)

It is assumed that:

δ = ϵδ̃, ω2
0 = 1, γ = ϵγ̃, α = ϵα̃, λ = 1 + ϵδ, f = ϵf̃ (11)

where ε is a formal small parameter, and σ is detuning parameter around the natural
frequency ω0 = 1. Next, in order to facilitate notation, the tilde is omitted. By
using the chain rule, the time derivative is transformed according to the expressions:

d

dt
=

∂

∂T0
+ ϵ

∂

∂T1
(12)

d2

dt2
=

∂2

∂T 2
0

+ ϵ
∂2

∂T0∂T1
+ ϵ

∂2

∂T1∂T0
+ ... =

∂2

∂T 2
0

+ 2ϵ
∂2

∂T0∂T1
+ ... (13)

then

∂2x(t)

∂T 2
0

+ 2ϵ
∂2x(t)

∂T0∂T1
+ ϵδ

∂x(t)

∂T0
+ x(t) + ϵγx(t)3

(14)

= ϵα[−µx(t) + x(t− τ)] + ϵf cos(1− ϵσ)t

Expanding derivatives of the equation (14)

∂x(t)

∂T0
=

∂x0

∂T0
+ ϵ

∂x1

∂T0
(15)

∂2x(t)

∂T 2
0

=
∂2x0

∂T 2
0

+ ϵ
∂2x1

∂T 2
0

(16)

∂2x(t)

∂T0∂T1
=

∂2x0

∂T0∂T1
+ ϵ

∂2x1

∂T0∂T1
(17)

one gets:

∂2x0

∂T 2
0

+ ϵ
∂2x1

∂T 2
0

+ 2ϵ
∂2x0

∂T0∂T1
+ ϵδ

∂x0

∂T0
+ x0 + ϵx1 + ϵγx3

0

(18)

= ϵα(−µx0 + x0τ ) + ϵf cos(T0 + σT1)
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Equating coefficients of powers yields

ϵ0 :
∂2x0

∂T 2
0

+ x0 = 0 (19)

ϵ1 :
∂2x1

∂T 2
0

+ 2
∂2x0

∂T0∂T1
+ δ

∂x0

∂T0
+ x1 + γx3

0 + µαx0 − αx0τ

(20)

−f cos(T0 − σT1) = 0

The general solution of (20) is

x0(T0, T1) = A(T1)e
iT0 + Ā(T1)ie

−iT0 (21)

x0τ (T0, T1) = A(T1)e
i(T0−τ) + Ā(T1)e

−i(T0−τ) (22)

where is complex conjugate of . Substituting equations (21) and (22) into equation
(20) and expanding derivatives we get:

∂x0

∂T0
= A(T1)ie

iT0 − Ā(T1)ie
−iT0 (23)

∂2x0

∂T0∂T1
= A′(T1i)e

iT0 − Ā′(T1)ie
−iT0 (24)

f cos(T0 − σT1) =
1

2
f [ei(T0+σT1) − e−i(T0+σT1)] (25)

and then the equation is obtained:

∂x1

∂T 2
0

+ 2
[
A′(T1)ie

iT0 − Ā′(T1)ie
−iT0

]
+ δ

[
A(T1)ie

iT0 − Ā(T1)ie
−iT0

]
+ x1

+γ
[
A(T1)e

iT0 + Ā(T1)e
−iT0

]3
+ µα

[
A(T1)e

iT0 + Ā(T1)e
−iT0

]
(26)

−α
[
A(T1)e

i(T0−τ) + Ā(T1)e
−i(T0−τ)

]
− 1

2
f [ei(T0+σT1) − e−i(T0+σT1)] = 0

Ordering equation (26) we get its final form

∂x1

∂T 2
0

+ x1 + γA(T1)
3e3iT0 + γĀ(T1)

3e−3iT0 + eiT0 [−1

2
feiσT1 − αA(T1)e

−iτ

+iδA(T1) + µαA(T1) + 3γA(T1)
2Ā(T1) + 2iA′(T1)] + e−iT0 [−1

2
fe−iσT1 (27)

−αĀ(T1)e
iτ − iδĀ(T1) + µαĀ(T1) + 3γĀ(T1)

2A(T1)− 2iĀ′(T1)] = 0

Eliminating from equation (27) the terms and , that lead to secular terms, we have

∂x1

∂T 2
0

+ x1 + γA(T1)
3e3iT0 + γĀ(T1)

3e−3iT0 = 0 (28)

Solving (28) for :

x1(T0, T1) = B(T1)e
3iT0 + B̄(T1)e

−3iT0 (29)

x1τ (T0, T1) = B(T1)e
3i(T0−τ) + B̄(T1)e

−3i(T0−τ) (30)
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where

B(T1) =
1

8
γA(T1)

3 (31)

B̄(T1) =
1

8
γĀ(T1)

3 (32)

we obtain

x1(T0, T1) =
1

8
γA(T1)e

3iT0 +
1

8
γĀ(T1)e

−3iT0 (33)

x1τ (T0, T1) =
1

8
γA(T1)e

3i(T0−τ) +
1

8
γĀ(T1)e

−3i(T0−τ) (34)

Substituting (21), (22) and (33), (34) into (10), the approximate solutions are
as follows:

x0(T0, T1) = A(T1)e
iT0 + Ā(T1)ie

−iT0

(35)

+ϵ

(
1

8
γA(T1)e

3i(T0−τ) +
1

8
γĀ(T1)e

−3i(T0−τ)

)
x0τ (T0, T1) = A(T1)e

i(T0−τ) + Ā(T1)e
−i(T0−τ)

(36)

+ϵ

(
1

8
γA(T1)e

3i(T0−τ) +
1

8
γĀ(T1)e

−3i(T0−τ)

)
and can be calculated from equations:

−1

2
feiσT1 − αA(T1)e

−iτ + iδA(T1) + µαA(T1) + 3γA(T1)
2Ā(T1)

(37)

+2iA′(T1)] = 0

−1

2
fe−iσT1 − αĀ(T1)e

iτ − iδĀ(T1) + µαĀ(T1) + 3γĀ(T1)
2A(T1)

(38)

−2iĀ′(T1)] = 0

Introduction into equation (37) the polar form of the complex amplitude:

A(T1) =
1

2
a(T1)e

iβ(T1) (39)

Ā(T1) =
1

2
a(T1)e

−iβ(T1) (40)

A′(T1) =
1

2
a′(T1)e

iβ(T1) +
1

2
ia(T1)β

′(T1)e
iβ(T1) (41)
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results in

−1

2
feiσT1 − 1

2
αa(T1)e

iβ(T1)−iτ +
1

2
iδa(T1)e

iβ(T1)

+
1

2
µαa(T1)e

iβ(T1) + 3γ

[
1

2
a(T1)e

iβ(T1)

]2
1

2
a(T1)e

−iβ(T1) (42)

+2i

[
1

2
a′(T1)e

iβ(T1) +
1

2
ia(T1)β

′(T1)e
iβ(T1)

]
= 0

Then recalling

eiτ = cos τ − i sin τ (43)

eiσT1−iβ(T1) = cosφ(T1)− i sinφ(T1) (44)

β′(T1) = σ − φ′(T1) (45)

the normal form is obtained

1

2
iδa(T1) +

1

2
µαa(T1)− σa(T1) +

3

8
γa(T1)

3 − 1

2
αa(T1) cos τ − 1

2
f cosφ(T1)

(46)

+
1

2
iαa(T1) sin τ − 1

2
f sinφ(T1) + ia′(T1) + a(T1)φ

′(T1)

Separating real and imaginary parts, the two, so called, modulation equations are
found:

1

2
δa(T1) +

1

2
αa(T1) sin τ − 1

2
f sinφ(T1) + a′(T1) = 0 (47)

1

2
µαa(T1)− σa(T1) +

3

8
γa(T1)

3 − 1

2
αa(T1) cos τ

(48)

−1

2
f cosφ(T1) + a(T1)φ

′(T1) = 0

For a steady state and , then

sinφ(T1) =
a(T1)[δ + α sin τ ]

f
(49)

cosφ(T1) =
a(T1)[4µα− 8σ + 3γa(T1)

3 − 4α cos τ ]

4f
(50)

Using simple trigonometric manipulations, the frequency response relation between
and , and between and is obtained:

a(T1)
2[16(δ + α sin τ)2 + (4µα− 8σ + 3γa(T1)

3

(51)

−4α cos τ)2]− 16f2 = 0

tanφ(T1) =
4(δ + α sin τ)

4µα− 8σ + 3γa(T1)3 − 4α cos τ
(52)
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First, it is assumed that there is no time delay feedback α=0 in the system and
f=0.2, µ=0, then analytical resonance curve obtained from equation (52) and from
numerical simulations are similar as presented in Fig. 9.

Figure 9 Amplitude–frequency characteristic for classical externally forced Duffing oscillator

Figure 10 Amplitude–frequency characteristic for externally forced Duffing oscillator with delayed
displacement feedback. The influence of delay amplitude α
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Figure 11 Amplitude-frequency characteristic for externally forced Duffing oscillator with delayed
displacement feedback. The influence of delay Ω

Now, influence of the time delay level α on the displacement amplitude is shown
in Fig. 10. It is turned out that the bigger α results in smaller vibrations but
the solutions are unstable. The system loses stability at about α = 0.2 , therefore
the time delayed feedback is so important to control the Duffing oscillator in a
proper way. On the other hand, looking at cutting process when time delay effect
is unavoidable because of regenerative effect. For vibrating system that contains
nonlinearity of Duffing type and external excitation, big stable vibrations occur only
at relatively small width of cut (α).

Finally, the effect of a time delay change, expressed by Ω, is analysed near the
fundamental resonance of the system around ω0 = 1and for α =0.2 (Fig. 11).
Parameter Ω=0.8, Ω =1.0, Ω =1.3 and Ω =2.5 correspond to unstable region in
SLD (Fig. 2) while Ω=3.5 represent stable region. Generally, the change of Ω shifts
the primary resonance curve but the shift direction depends on the analysed point
position on SLD. Interestingly, the unstable curve in Fig.11 obtained for Ω =1.3
can be stabilised by changing slightly the frequency Ω of external excitation.

4. Conclusions

The nonlinearity of Duffing type and external excitation influence the behaviour of
a classical linear model of regenerative cutting. Stability zones obtained on the basis
of a linear model with time delay get small after adding Duffing type nonlinearities.
It means that the regions of the asymptotic stable zero solutions are narrower.
On the other hand, in a case of a linear system the unstable solutions run away
to infinity while for the nonlinear model the solutions tend to limit cycle. That
is better alternative from practical point of view because vibrations amplitude is
limited during a real cutting process.

Duffing oscillator with external excitation and time delay can be a good method
of chatter vibrations suppression. That is especially important, since an increase of
delay amplitude (α), which is in fact represents a cutting width, limits vibrations
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and favours stability loss of harmonic solution, comparing to the externally forced
Duffing oscillator without time delay.
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