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The purpose of this theoretical work is to present a stabilization problem of beam with
a distributed model of feedback delay. A displacement feedback and particular polar-
ization profiles of piezoelectric sensors and actuators are introduced. The structure is
described by integro–partial differential equations with time–dependent coefficient. The
uniform stochastic stability criteria of the beam equilibrium are derived using the Lia-
punov direct method. As the axial force is described by the wide–band gaussian process
the dynamic equation has to be written as Itô evolution equation with white–noise co-
efficient and the Itô differential rule is applied in order to calculate the differential of
Liapunov functional. The influence of the time–deley parameter, stiffness and intensity
of axial force on dynamic stability regions is shown.
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1. Introduction

Problem of stabilization of motion for mechanical distributed in space systems was
several times solved in the literature. The vibration were actively damped by means
of piezoelectric patches glued to the structure surfaces. Despite the fact of large
dimensions the presence of time delays was neglected. In the paper [1], [2] theo-
retical fundamentals of stabilization of beam with shear deformations and rotary
inertia effect was presented. The piezoelectric layers were glued to the both sides to
the beam compressed by time–dependent axial forces. A velocity feedback and par-
ticular polarization profiles of piezoelectric sensors and actuators were introduced.
The structure was described by partial differential equations including transverse
and rotaryinertia terms, general deformation state with interlaminar shear strains.
A viscous model of external damping with the constant proportionality coefficient
was assumed to describe a dissipation energy both in the transverse and rotary
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motion. The beam motion was described by the transverse displacement. In orded
to find an exponential one–side estimation the calculus of variations is used. The
associated Euler equations in the form of system of differental equations were solved
analytically and the stabilization problem was reduced to transcendental algebraic
inequality with respect to the exponent of estimation. The effect of spatially uniform
time–dependent compressive forces on a stability of circular plates was examined
[5]. The purpose of this analytical work was to generalize the previous result relat-
ing to the axially symmetric motion and to investigate a uniform stability of plate
compressed by time–dependent forces. The stability of parametric vibrations of
circular plate subjected to in–plane forces was analysed by the Liapunov method.
The method was applied without the earlier finite dimensional or modal approxi-
mations. The energy–like functional was proposed; its positiveness was equivalent
to the condition in which static buckling does not occur. Taking into account that a
plate is compressed radially by time–dependent and uniformly distributed along its
edge forces, a dynamic stability of an undeflected state of isotropic elastic circular
plate was analysed. Assuming that the compressing force are broad–band normal
processes the plate dynamics was described by stochastic Itô equations. The criti-
cal damping coefficient has been expressed by the intensity and the mean value of
compressing force. Stochastic stability of distributed control [3] and fuzzy control
[4] systems with delays is studied.

2. Basic Assumptions, Definitions

Consider the beam of length ℓ, width b, and thickness hb, loaded by axial–time
dependent force with piezoelectric layers mounted on each of two opposite sides.
The beam is simply supported on both ends. The piezoelectric layers are bonded
on the beam surfaces and the mechanical properties of the bonding material are
represented by the effective damping coefficient calculated from the rule of mixtures.
Th edamping coefficient is a linear function of both the beam and bonding layer
damping coefficients. It is assumed that the transverse motion dominates the axial
vibration. The thickness of the actuator and the sensor is denoted by ha and hs,
respectively. Neglecting the stiffness of piezolayer in comparison with that of the
beam and assuming the changing width bs(x) of the sensor and the changing the
width ba(x) of the actuator the influence of the piezoelectric actuator on on the beam
can be reduced to bending momentMe distributed along the actuator. The position
dependent active widths of piezoelements can be realized by introducing suitable
shape of metalized electrodes glued to piezoelements. It is the easiest way to perform
the position dependent active elements of feedback system. The functions bs(x) and
ba(x) are called the sensor characteristic function and the actuator characteristic
functions, respectively.

2.1. Sensor and Actuator Equations

Sensor electric displacement in direction perpendicular to the beam surface is given
by

D3 = −e31ϵ1 (1)

where e31 is the piezoelectric stress/charge coefficient, and ϵ1 sensor strain.
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Expressing strains be the beam curvature and the distance from the neutral axis
we integrate the electric displacement over the sensor area

D3 = −ds
(hs + hb)Es

2

∫ ℓ

0

bs(x)w,xxdx (2)

where ds is the piezoelectric strain/charge coefficient of sensor. Finally, the sensor
voltage is calculated using the formula for a flat capacitor

Vs = −ds
(hs + hb)Eshs

2ϵ33As

∫ ℓ

0

bs(x)w,xxdx (3)

where As is the effective sensor area and ϵ33 is the permittivity coefficient. Using
the displacement feedback control the voltage applied to the actuator is

Va = KaVs (4)

The control bending moment can be expressed by the actuator stresses σa, mo-
ment arm ha+hb and the cross–section area haba(x) of the actuator in the following
way

Me = Dba(x) (5)

where D = da31Vaha
hb+ha

2 .

2.2. Distributed Model of Delayed Feedback

Due to a delay in the displacement feedback system the control voltage Va and the
control bending moment are disturbed, that is decreasing the stabilization effect
[7]. The delay is not fully determined and the delayed moment Me is modelled by
means of convolution in the form

Me = Dba(x)

∫ t

0

∫ ℓ

0

bs(x)w,xx(x, t− τ) exp(−λτ) d x d τ (6)

Eq. (6) represents decreasing influence of distributed time-delay from the range
{0, t} on the feedback signal Va. Constant λ describes a level of signal decreasing.
It should be also remembered that due to the position dependent widths ba(x) the
feedback bending moment is also space dependent Me = Me(x, t).

2.3. Stability Definition

The main purpose of the paper is to examine a uniform stability of the equilibrium
state. To estimate a perturbed solution of beam dynamics equation it is necessary
to introduce a measure of distance ∥.∥ of the solution of dynamics equation with
nontrivial initial conditions from the trivial one. In order to make the transition to
the Liapunov stability in probability (uniform stochastic stability) we merely have
to estimate the probability of perturbed solutions for all t > 0. More precisely, the
equilibrium state of dynamics equation is said to be uniformly stochastically stable,
if the following logic sentence is true [8]
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∧
ϵ≥0

∧
δ≥0

∨
r≥0

∥w(., 0)∥ ≤ r ⇒ P (sup
t≥0

∥w(., t)∥ ≥ ϵ) ≤ δ (7)

In the present paper the direct Liapunov method is proposed to establish criteria
for the uniform stochastic stability of the unperturbed (trivial) solution of the beam–
like plate compressed by the uniformly distributed time-dependent forces.

3. Dynamics Equation

Consider the beam loaded axially by a time–dependent force Fo + F (t) with piezo-
electric layers mounted on each of the two opposite sides of the beam of length ℓ.
The piezoelectric layers are assumed to be perfectly bonded on the beam surfaces.
The sensing and actuating effects of piezoelectric layers are used to stabilize para-
metric vibrations excited by the oscillating axial force. Assuming the negligible
stiffness of the sensor in comparison with that of the beam the influence of the
piezoelectric actuator on the beam is reduced to a bending moment Me distributed
along the beam. The Kirchhoff hypothesis on deformable normal element to the
middle line is used and the rotary and coupling inertial are neglected. The mass
density is denoted by ρ, the cross-section area of the beam by Ao and the bending
stiffness by EJ . The transverse displacement w of the beam is measured from the
equilibrium state and is governed by the following dynamics equation

ρAw,tt + EJw,xxxx + (Fo + F (t))w,xx +Me
,xx = 0 (8)

Dividing by ρA and substituting Eq. (6)

w,tt +
EJ

ρA
w,xxxx +

fo + f(t)

ρA
w,xx +

+
D

ρA
ba,xx

∫ t

0

exp(−λτ)

∫ ℓ

0

bs(x)w,xx(t− τ)d x d τ = 0 (9)

The beam is assumed to be simply supported at both ends. If the stochastic
parametric excitation can be modelled as the Gaussian white noise with intensity
σ∗ Eq. (9) can be treated as the Itô integro – partial differential equations

dw = vdt

dv = −
[ D

ρA
w,xxxx +

fo
ρA

w,xx + (10)

+
D

ρA
ba,xx

∫ t

0

exp(−λτ)

∫ ℓ

0

bs(x)w,xx(t− τ)d x dτ
]
dt− σ∗w,xxd W

where standard Wiener process is denoted by W. In order to avoid qualitative ana-
lysis of integro–partial differential equations we expand the transverse displacement
into series of functions satisfying simply supported boundary conditions on both
ends
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w(x, t) =
∞∑

i=1,2,..

Pi(t) sin
iπx

ℓ
(11)

In order to analyse equilibrium stability it is necessary to fix shapes of piezo-
electric sensor and piezoactuator. The width of both elements will be described by
sine function in the following way

bs(x) = bos sin
πx

ℓ
(12)

ba(x) = boa sin
πx

ℓ
(13)

Introducing functions P (t), Q(t) and R(t) we obtain the equation of the first
mode corresponding to Eq. (10) in the form of the following system of Itô evolution
equations

dP = Qd t

dQ = −[(k2 − fo)P − γR]d t+ σPd W (14)

dR = (P − λR)d t

where

γ =
D

ρA
(π/ℓ)4

k2 =
EJ

ρA
(π/ℓ)4

fo =
Fo

ρA
(π/ℓ)2

σ =
σ∗

ρA
(π/ℓ)2

Solutions of Eq. (14) are evolutionary processes with known infinitesimal operator
L(.).

4. Uniform Stability Analysis

Using Barabashin method [6] the Liapunov function is given by a quadratic form
with respect to P, Q, R with unknown coefficients

V = w11P
2 + w22Q

2 + w33R
2 + 2w12PQ+ 2w23QR+ 2w13PR (15)

Using the main advantage of the proposed method we impose condition on the
time–derivative of function in Eq. (15) along solutions of Eq. (14) with cancelled
stochastic component

dV

dt
= −P 2 (16)
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According to Barabashin’s algorithm [6] the Liapunov function is chosen in the
form

V = (k2 − γ/λ− fo)(k
2fo − λ2)λP 2 + λ(k2 − γ/λ− fo + λ2)Q2 + λk4γ2R2 +

−2k2γ(k2 − γ/λ− fo)PR+ 2λ2k2γQR (17)

The functional (17) is positive definite if the static criterion of stability is fulfilled

fo < k2 − γ/λ (18)

Infinitesimal operator has the form [8]

L =
∂

∂t
+

3∑
i=1

bi
∂

∂xi
+

1

2

3∑
i=1

3∑
j=1

aij
∂2

∂xi∂xj
(19)

where bi is a column matrix of right hand side deterministic functions of Eq. (14)
and aij is a matrix containing intensities of Wiener processes in Eq. (14). In the
problem we have just one stochastic force present in the second equation of system
Eq. (14). Therefore, matrix a has one nonzero element a22 = −σx2. Calculating
the infinitesimal operator LV along solutions of Eq. (14) we have

LV = −
[
2k2γλ(k2 − γ/λ− fo)− σ2(k2 − γ/λ− fo + λ2)

]
P 2 (20)

Thus, the trivial solution of equilibrium state is uniformly stable if the intensity
coefficient is sufficiently small

σ2 <
2k2γλ(k2 − γ/λ− fo)

k2 − γ/λ− fo + λ2
(21)

Obtained formula contains all parameter of the system with active vibration
control and the parameter of distrbuted delay λ. The proposed analysis can be ex-
tended to more general feedback control using a flexibility of Barabashin algorythm.

5. Conclusions

The stabilization of vibrating beam with distributed piezoelectric sensor, actuator,
and delayed displacement feedback has been studied. The stabilization of para-
metric vibrations needs sufficiently small intensity of axial force σ. Admissible
disturbance intensity strongly depends on the feedback gain factor. The assumed
model of delay significantly decreases the stabilization effect. Increase of constant
component of axial force decreases stability region.
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