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In the paper, the author provides a proposal of a quick prototyping environment for
algorithms controlling homogenous, autonomous mobile robots. The solution proposed
enables monitoring of the operation of a group of mobile robots consisting of the record-
ing of motion parameters and signals from distance detectors as well as of controlling the
drive units. Furthermore, the solution is flexible, enabling work with various numbers of
robots as well as modification of their settings, and conforms to the real time system re-
quirements assumed. In the course of the development process, AmigoBot mobile robots
manufactured by ActiveMedia Robotics were used. The control and measuring environ-
ment proposed has been verified based on the sample behavioural task of ”running in
the middle of a free space”. A neural algorithm of a mobile robot’s AmigoBot movement
control was proposed in the project. A control synthesis was carried out with the use of a
mathematic model of the robot; a system’s stability was proved in a Lapunow sense. In a
control process artificial neural networks were used, linear because of weight. A received
solution was verified with the use of a real mobile robot in an author control–measuring
environment.
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1. Introduction

The mobile robots are nonholonomic systems, nonlinear with complex dynamics,
therefore appropriate control systems should be applied in order to realise prop-
erly generated movement’s trajectory. Classic control methods are optimal control
methods and various algebraic methods that require knowledge of a mathematic
model of on object and parameters of this model. Their precise determining is
often a very hard task, especially when the object’s characteristics change during
the work. For instance, resistance to motion undergoes a change depending on a
base on which the robot moves. That is why models applied in practice describe
parameters of the objects only approximately.
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In a control theory, for some time, design methods of robust and adaptive control
systems are developed, which does not require an exact knowledge of the object’s
model and take into account occurring of uncertainties in an open way. In the
adaptive control method a control algorithm is designed in a way to make it able
to modify independently its characteristics with changing work conditions.

Along with the mentioned methods applied to design control systems in uncer-
tain conditions, what become more and more popular are formalisms defined as an
artificial intelligence – neural networks and systems with a fuzzy logic. The artifi-
cial neural networks, because of an ability to approximate any nonlinear mapping
and learning and adaptation, became an attractive tool applied in an analysis of
nonlinear systems.

A neural algorithm of a mobile robot’s AmigoBot movement control was pro-
posed in the project. A proposed solution was verified with a use of an author
environment of quick prototyping and a mobile AmigoBot robot.

2. Modelling

Mobile wheel robot, which physical parameters were used in a modelling process, is
a laboratory AmigoBot robot (Fig. 1a). A model schematically showed in Fig. 1b
was assumed to modelling dynamic characteristics. This model consists of: frame
3, two driving wheels 1 and 2 and free rolling castoring wheel 4.

a) b)

Figure 1 a) Mobile robot Amigobot, b) model of mobile robot

S point is the frame’s centre of inertia, the frame’s angle of rotation is defined as
β, while angles of wheel’s rotation with r1 = r2 = r radiuses are defined as α1

and α2. A description of the mobile wheel robot’s movement was realised on the
assumptions that there is a lack of the driving wheels’ skid and that the robot moves
on a horizontal road.

The description of the mobile wheel robot’s dynamics is written down generally
in a vector-matrix form [2, 3, 4, 5].

M(q)q̈ + C(q, q̇)q̇ + F (q̇) = Q (1)

where:
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M – matrix of generalized masses,

M =

[
a1 + a2 + a3 a1 − a2
a1 − a2 a1 + a2 + a3

]
(2)

C − matrix of coefficients of centrifugal forces and Coriolis forces,

C =

[
0 2a4 (α̇2 − α̇1)
−2a4 (α̇2 − α̇1) 0

]
(3)

F – vector of friction wheels rolling forces,

F =

[
a5sgnα̇1

a6sgnα̇2

]
(4)

Q − vector of generalized forces,

Q =

[
M1

M2

]
(5)

Values of parameters a(.) were obtained in and identification process [2, 3, 4, 5].

3. Linear in the Parameter Neural Nets

Issues of modelling and control of nonlinear objects is complex. As a result of
the lack of a systematic approach to analysis and synthesis of dynamic nonlinear
systems so far, artificial neural networks, because of the ability of approximation
of any nonlinear mapping and adaptation, became an attractive tool applied in
nonlinear systems theory.

As everybody knows, neural networks have good static mapping properties.
Applying of the neural networks to control in a real time may require recreating
a full dynamics of controlled objects, which may result in a great dimensioning
of dynamic networks. However, applying of linear neural networks, because of
their weights, such as radial networks, B–splain networks, networks with functional
expansions, prevent a problem of solutions explosion. Taking into consideration
nonlinearity of a controlled object, a linear neural network with the first layer of
weight generated randomly was applied to compensation its nonlinearity in this
project.

Let’s consider a neural network presented in Fig. 2.
The networks’ input–output mapping from Fig. 2 has a form

yi =
N∑
j=1

{
wijS

[
n∑

k=1

vjkxk + vvj

]
+ wwi

}
i = 1, 2..., r (6)

Assuming input vector’s element x0 ≡ 1 and threshold values’ vector
[vv1, vv2, ..., vvN ]T as the first column of V Tmatrix, it was written down:

y =WTS
(
V Tx

)
(7)

where S = [S1(.), S2(.), ..., SN (.)]
T
is a vector of function describing neurons, which

first element equals 1 and vector [ww1, ww2, ...wwr]
T
makes the first column of WT
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matrix. From mathematic point of view, a two–layer network may approximate a
continuous function of several variables. Any continuous function
f : Df ⊂ Rn → Rr, where Df is a compact subset Rn, may be approximated with
any closeness by a two–layer neural network with appropriately selected weights.

Figure 2 Structure of two–layer neural network

That means for a particular compactDf set and positive value of an approximation
error ε there is two–layer neural layer (Fig. 2) that a f(x) function can be wrote
down as [5]:

f(x) =WTS
(
V Tx

)
+ ε (8)

for ||ε|| < εN . If weights of the first layer of the V Tnetwork are determined randomly
[5], thenWTweights of the second layer of the network define its characteristics and
then it is a one-layer network. If we define ϕ(x) = S

(
V Tx

)
, then we can write a

redundancy (2) as:
y =WTϕ(x) (9)

where: x ∈ Rn, y ∈ Rr, ϕ(.) : Rn → RN , and N is a number of neurons in a
hidden layer. This network is a linear one because of WT weights and has approx-
imating properties of nonlinear functions. Sigmoidal bipolar functions, as a vector
of basic networks functions, were assumed to approximation of nonlinearity. Then
estimating of nonlinearf (x) function is given by an equation:

f̂ (x) = ŴTS
(
VTx

)
, (10)

where V is a constant weights matrix of an input layer generated randomly.
Functions of neurons activation are described by a redundancy:

S
(
V Tx

)
=

2

1 + exp (−βVTx)
− 1 (11)

where β coefficient is responsible for slope of the function.



Neural Control of a Mobile Robot ... 25

4. Neural control

Let’s write dynamic equations of motion (1) of a mobile wheel robot in a form:

M (q, a) q̈ + C (q, q̇, a) q̇ + F (q̇, a) = u (12)

Let’s define errors for a given trajectory of motion:

e = qd(t)− q(t) (13)

s = ė+ Λe (14)

where Λ is a design matrix, diagonal with positive elements.
Differentiating (14) and taking into account (12), we will receive a description

of a bounded system control in a generalized error function s in a form

M(q, a)ṡ = −C (q, q̇, a) s+ f(x) (15)

where a nonlinear f(x) function is given by a redundancy

f(x) =M (q, a) (q̈d + Λė) + C (q, q̇, a) (q̇d + Λe) + F (q̇, a) (16)

General form of a control signal with regards to a compensation of model nonlin-
earity is as follows [5]

u = f̂ +KDs (17)

where f̂ is a function approximating f function, and

KDs = KD ė+KDΛe (18)

Is an equation of PD regulator located in an external loop of a control system.
In a synthesis of an adaptive neural algorithm, a compensation of an object’s

nonlinearity was realized with a use of a neural network presented in a chapter 3.
Let’s writef(x) function as:

f(x) =WTS(x) + ε (19)

where ε is a bounded approximation error satisfying a redundancy ∥ε∥ < εN ,
εN = const.

Let’s assume that ideal weight of the network is bounded, then an estimating of
f(x) function will be:

f̂(x) = ŴTS(x) (20)

whereŴmeans an estimating of neural network weights determined in an adaptation
algorithm.

Control law will have a form:

u = ŴTS(x) +KDs (21)
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Figure 3 Neural control system structure

Determining estimated networks weights error:

W̃ =W − Ŵ (22)

we will determine approximated function error:

f̃(x) = W̃TS(x) + ε (23)

Implementing the redundancy (23) to the equation (15), we will receive a description
of a bounded control system:

M (q) ṡ+ C (q, q̇) s+KDs = W̃TS (x) + ε (24)

The synthesis of neural control system of a mobile robot was carried out on the
basis of Lapunow stability theory [5].

Let it be given a function:

L =
1

2

[
sTM(q)s+ tr

(
W̃TF−1W̃

)]
(25)

where:
W̃ – parameters estimation error,
F – diagonal matrix with positive elements.
Differential coefficient of L function will come to:

L̇ = sTM(q)ṡ+
1

2
sT Ṁ(q)s+ tr

(
W̃TF−1 ˙̃W

)
(26)

Taking a description of a bounded control system (24) to a redundancy (26), we
will receive:

L̇ = −sTKDs+ 0.5sT
(
Ṁ(q)− 2C(q, q̇)

)
s

(27)

+tr
{
W̃T

(
F−1 ˙̃W + S (x) sT

)}
+ sT ε

Assuming an algorithm of network weights’ learning in a form:

˙̂
W (t) = FS(x)sT (28)
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and knowing that a matrix:

Ṁ(q)− 2C(q, q̇) (29)

is a skew-symmetric matrix, we will receive:

L̇ = −sTKDs+ sT ε ≤ −KDmin ∥s∥2 + εN ∥s∥ (30)

where KDmin is the least characteristic value of KD matrix.
Because εN is a constant value, then V̇ ≤ 0 provided that a following condition

is met:

ψ = {s : ∥s∥ > εN/KDmin ≡ bs} (31)

From the redundancy (4, 3, 13) it comes out that generalized following error s is
uniformly finitely bounded to ψ set, with a practical limit assigned by bS . Moreover,
increasing in KD coefficient of PD regulator causes decreasing in s following error,
and in consequence also e and ė errors, which are bounded on the basis of (31).
Such a perspective of the neural control enables a correct work of a closed–loop
control system as a result of activity of an internal loop with PD regulator up to a
moment when a network starts to learn. That means a preliminary learning process
of a network’s weights is not required and a network’s weights are estimated in a
real time.

5. Verification of solutions

Verification of a proposed control algorithm was carried out in a control–measuring
environment designed by the authors. In order to register signals from a real robot,
taking advantage of the libraries provided by a producer, tolbox Matlab/Simulink
software was built [1]. This solution enables to monitor work of a group of mobile
Amigobot robots, which consists of registration of motion parameters, readings
of a distance sensors, battery voltage measurement, and measurement of electric
currents engines driving wheels and control of drives.

Look of a configuration window of sub–system made in Matlab/Simulink pro-
gram shows Fig. 4.

Figure 4 The configuration window of the Amigo sub–system
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Registered random motion parameters and signals are shown in Fig. 5.
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Figure 5 Random signals: a) motion track point A of a mobile robot b) control signals, c) adaptive
control and PD control, d) errors of driving wheels realization speed

In Fig. 5b there is a changing of systems controlling the work of a laboratory
AmigoBot robot presented, which A point moves on a track presented in Fig. 5a.
The speed realization errors during realization of sinusoidal trajectory (Fig. 5a)
is presented in Fig. 5d. Fig. 5c shows control signals tracks, which consist of
nonlinearity compensating part and a control signal generated by PD regulator.

6. Conclusions

Proposed mobile robot movement control algorithm with a neural adaptation of
model parameters enables a realization of complex motion trajectories. Verification
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results received in an author’s control-measuring environment allows assuming that
the solution is correct. The speed and displacement errors are concurrent to zero
and estimated parameters are bounded.

Presented control algorithm may be implemented as a low level control system
in hierarchical mobile robots control systems, providing realization of trajectory
generated by superior control systems.

This paper is supported by Polish Government under Contract N N501 068838
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