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In this paper the modeling by different category graphs and analysis of vibrating clamped
– free mechatronic system by the approximate method called Galerkin’s method has been
presented. The frequency – modal analysis and assignment of amplitude - frequency
characteristics of the mechatronic system is considered. The aim was to nominate the
relevance or irrelevance between the characteristics obtained by exact – only for shaft
– and approximate method. Such formulation especially concerns the relevance the rel-
evance of the natural frequencies-poles of characteristics both of mechanical subsystem
and the discrete – continuous clamped – free vibrating mechatronic system. This ap-
proach is a fact, that approximate solutions fulfill all conditions for vibrating mechanical
and/or mechatronic systems and can be an introduction to synthesis of these systems
modeled by different category graphs. Using of the hypergraph methods of modeling and
synthesis methods of torsionally vibrating bars to the synthesis of discrete–continuous
mechatronic systems is originality of such formulation problems.

Keywords: Discrete–continuous vibrating mechatronic system, approximate method,
graphs and structural numbers, modeling, synthesis

1. Introduction

In the research Centre in Gliwice the problems of analysis of vibrating beam systems,
discrete and discrete–continuous mechanical systems by means of the structural
numbers methods modeled by the graphs, hypergraphs, have been investigated (e.g.
[4, 5, 10, 21]). The synthesis1 of a selected class of continuous, discrete - continuous
discrete mechanical systems and active mechanical systems have been dealt in [3-9].

The approximate method of analysis, that means the orthogolization method
[15] and Galerkin’s method [16], has been used to obtain the frequency–modal

1The analysis and synthesis of electrical systems were presented in monograph [1].
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characteristics. The continuous–discrete torsional and transverse vibrating mecha-
tronic systems were considered in [10, 11]. Transformations of hypergraps of flexibly
vibrating beams were presented in [14]. To compare the obtained dynamical char-
acteristics – dynamical flexibilities only for mechanical torsional vibrating bar and
transverse vibrating beam being a parts of complex mechatronic systems, an exact
method and the Galerkin’s method were used [12, 13, 16]. Such formulation can
be an introduction to synthesis of vibrating mechatronic systems which will lead to
generating the vibrations with require parameters.

2. Characteristics of torsional discrete–continuous vibrating mechatronic
system

Therefore it becomes necessary to search the new solutions, having on aim the re-
duction of movable elements as well as compiled and long kinematic chains. From
here in last years it is clear that there is a huge development on the market, espe-
cially in field of new technologies basing on phenomenon of piezoelectricity, electro
- and the magnetostriction {e.g. [17, 19]}. The piezoelectric elements are used to
eliminate the oscillation [18].

Figure 1 The torsional vibrating mechatronic systems with mechanical excitation

Considered vibrating systems has been shown in Fig. 1. The equation of torsional
vibrating shaft with ideally attached piezotransducer showed in Fig. 1 is following:

ρIo
∂2φ

∂t2
−GIo

∂2φ

∂x2
=

−λ∗

l
U [δ (x− x1)− δ (x− x2)] +

Mo

l
sinωtδ (x− l) (1)

where:
δ(.) – Dirac’s function,
G – the Kirchoff’s modulus,
ρ – the mass density ρ,
I0 – the polar moment of inertia for a shaft,
l – length of shaft,

λ∗ = 2
3πGp

[
(R+ hp)

3 −R3
]

d15

lp
,

Gp – the Kirchoff’s modulus of piezoelectric.
Sentence (1) is coupling with equation transducer, which can be written in form:

dU
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+

1

RsCp
U +

2πR2hpd15Gp

lpCp
φ̇(lp, t) = 0 (2)
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where: Cp = 2πRhp
el
lp

(
1− 2d15Gp

e1

)
+ Cx

Cx – additional capacity in short circuit system.
The expressions (1) and (2) can write in form of:{

φ̈− a2φxx − bU [δ(x− x1)− δ(x− x2)] = cMδ(x− l)

U̇ + α1U + α2φ̇(lp, t) = 0
(3)

where:
a =

√
G
ρ

b+ −λ
I0lρ

c = 1
I0lρ

α1 = 1
RsCp

α2 =
2πR2h)pd15Gp

lpCp

The set of equations (3) it be solved with Galerkin’s method, in which the
solution has the form

φ(x, t) = A
∞∑

n=1

sin
[
(2n− 1)

π

2l
x
]
cosωt (4)

The considered shaft is exited by harmonic moment as

M = M0 cosωt (5)

The tension, generated on clamps, piezotransducer will have harmonic character,
because extortion has the same character:

U = B sinωt (6)

The sentence (4) has to fulfill boundary conditions as:

φ(0, t) = 0, X(0)T (t) = 0 ⇒ X(0) = 0
∂φ
∂t |x=1, X ′(l)T (t) = 0 ⇒ X ′(l) = 0

(7)

After calculation of suitable derivatives (4) and their substitution to the equations
describing vibration and the state of mechatronic system the set of equations (3)
takes the following form{

A sin kx cosωt
[
a2

(
π
2l

)2 − ω2
]
−Bbδ(x) sinωt = cM cosωtδ(x− l)

Bω cosωt+ α1B sinωt− α2Aω sin
(
(2n− 1) π

2l lp
)
sinωt = 0

(8)

where:
k = (2n− 1) π

2lx
δ(x) = δ(x− x1)− δ(x− x2)

or using the Euler’ theorem and after transformations in matrix form sin kx
[
a2

(
π
2l

)2 − ω2
]

− 1
eiπ/2 bδ(x)

−α2
1

eiπ/2ω sin lp ω + α1

eiπ/2

[
A
B

]
=

[
cM0δ(x− l)
0

]
(9)
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that is
WA = F (10)

In (10) the value of main determinant of matrix W is equal

|W| = sin kx

[
a2

( π

2l

)2

− ω2

](
ω +

α1

eiπ/2

)
− b

(eiπ/2)2
δ(x)α2ω sin klp (11)

Substituting in (9) first column, by column of free words, the determinant WA was
received

|WA| = cM0δ(x− l)
(
ω +

α1

eiπ/2

)
(12)

The amplitude An is determined as

An =
|WAn |
|W|

(13)

and after substitution of it to (4), the dynamic flexibility after transformations takes
the form

Yxl =

∞∑
n=1

Y
(n)
xl (14)

In (14) Y
(n)
xl is equal

Y
(n)
xl =

cδ(x− l)
(
ω + α1

eiπ/2

)
sin kx

[
a2

(
π
2l

)2 − ω2
] (

ω + α1

eiπ/2

)
− b

(eiπ/2)
2 δ(x)α2ω sin klp

(15)

The transient of absolute value of flexibility in considered range of frequency and
flexibility for three first vibration modes (14) – after further formal transformations
and after putting of the numerical values of parameters and when x = l, that is
αY = |Yll| – it was showed in Fig. 2.

3. Transformations of characteristics of torsional vibrating subsystems
of mechatronic systems

The problem consists in modeling of torsional vibrating multiple–segment with me-
chanical bar systems as subsystems of mechatronic systems in the form of models
with uniformly distributed parameters and constant section in the segment.

In the modeling of the considered class of systems, the dependence between the
amplitudes of generalized forces 2sk ∈ 2S and generalized displacements 1si ∈ 1S
can by described by dynamical flexibility Yik [4, 5]. In other words, dynamical
flexibility is the assigned amplitude of generalized displacement in the direction of
i–th generalized coordinate caused by generalized force in the form of harmonic
function with unitary amplitude, in relation with k–th generalized coordinate, so

1si = Yij 2sj (16)

where: 2sj = Qj , sinωt = 1ejωt, ω – frequency.
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Figure 2 Transient of the sum for n=1, 2, 3 vibration mode

A characteristic - dynamical flexibility of mechanical subsystem of mechatronic
system is given in form

Y (s) =

k∑
i=0

cith
jΓs

l∑
j=0

djthjΓs

(17)

After transformations of flexibility into mobility [4, 5, 15, 16] the mobility function
has been obtained as

V (r) =

k∑
i=0

cir
i

l∑
j=0

djrj
(18)

where:
ci, ci−1, ... , c0, dj , dj−1, ... , d0 are any real numbers,

Γ =
√

ρ
GL =

√
ρ(i)

G(i)L(i), – mass density,

L = L(i) – length of basic element [4, 5],
s = jω, j =

√
−1, i, j, k, l – natural numbers, k − l = 1.

4. Modeling the subsystems of mechatronic systems by means the graphs

The review of essential concepts of graph theory, to fix the meaning of necessary
terms and symbols have been presented before modeling the torsional vibrating con-
tinuous bar systems as subsystems of mechatronic systems and problems connected
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with it. Weighted hypergraphs (called in this paper also weighted block graphs or
weighted graphs of category k) have been applied to modeling of the considered
systems. Definitions of graphs, as mathematical objects, have been presented on
the basis of the literature. The bibliography of this subject is very extensive and
regards the theory as well as its applications (see [1, 2, 4]).

A following couple (using the symbols introduced in papers [4, 5, 20, 21])

X = ( 1X, 2X) (19)

is called a graph, where:

1X = {1x0, 1x1, 1x2, ..., 1xn} – finite set of vertices,

2X = {2x1, 2x2, ..., 2xm} – family of edges,
being two–element subsets of vertices, in the form of

2xk = (1xi, 1xj) (i, j = 0, 1,..., n).
The hypergraph is called a couple

kX =
(
1X,k2X

)
(20)

where: 1X is the set as in (20), and k
2X =

(
k
2X

(i)/i ∈ N
)
, (k=2,3, ... ∈N) is a

family of subsets of set 1X; the family k
2X is called a hypergraph over 1X as well,

and k
2X =

{
k
2X

(1), k2X
(2), ..., k

2X
(m)

}
is a set of edges [2], called hyperedges or blocks,

if {
k
2X ̸= ∅(i ∈ I)

∪
i∈I

k
2X

(i)=2X
(21)

Graphs X and hypergraphs kX have been shown in their geometrical representa-
tion on plane. Sets of edges 2X have been marked by lines, subsets of family k

2X
(hyperedges or blocks) – two–dimensional continuum with enhanced vertices, in the
shape of circles.

In this paper hypergraphs – graphs of category k − kX (k = 2, 3) are used,
which will be clearly mentioned each time, as well as graphs X, called also graphs
of the first category – 1X (see [4, 5]). The basic notions are shown in literature
(e.g. [4, 5, 15, 16]).

In the example of torsional vibration of the subsystem (i) with constant cross–

section and constant torsional rigidity (GJ0)
(i)

(where G(i) – Kirchhoff’s modulus of

a bar structure, J
(i)
0 – polar moment of inertia of bar cross–section as well as length

l(i), the model in the form of a determined and continuous system is introduced. In

this model, generalized displacements 1s
(i)
1 and 1s

(i)
2 – angles of rotation correspond

to its extreme points. These displacements are measured in the inertial system of
reference. Moreover, the origin of the inertial system of reference has generalized

coordinate 1s
(i)
0 = 0 assigned to it (see e.g. [4,5]).

In this way a set of generalized displacements of a torsional vibrating subsystem

of mechatronic system can be formulated as follows: 1S
(i) =

{
1s

(i)
0 ,1s

(1)
1 ,1s

(i)
2

}
,

while its dynamical flexibilities set may be denoted as Y (i) =
{
Y

(i)
11 , Y

(i)
22 , Y

(i)
12

}
,(

Y
(i)
12 = Y

(i)
21

)
.
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Determining one–to–one transformation, that:

f :1S
(i) → 1X

(i), 1s
(i)
j ∈ 1S

(i), 1x
(i)
j ∈ 1X

(i), j = 0, 1, 2 (22)

the hypergraph of bar – subsystem of mechatronic system is obtained

2X
f

(i) =
[
2X(i), f

]
(23)

where: 2X(i) =
(
1X

(i), k
2X

(i)
)
,1X

(i) =
{
1x

(i)
0 , 1x

(i)
1 , 1x

(i)
2

}
, k

2X
(i) – one–element

family – three–element subset of vertices 1X
(i).

Investigating i − −th segment in a n–segment mechanical bar as a subsystem
of mechatronic system with constant section, the hypergraph model 2X

f

(i) is intro-

duced.
All the elements of hypergraph and all the generalized displacements, material

coefficients and geometric coefficients should be denoted by subscript (i) placed to
the right of the stem symbol, whereas subscript k = 2 should be placed to the left
of the stem symbol.

On the basis of this assumption, geometrical representation of mapping (23) has
been shown in [4, 5].

The assignment f3 to the edges of weighted Lagrange skeleton
→

2X
(i)
0

12

of hyper-

graph for the model of i-th bar - 2X(i)

f
, making couples of numbers – respectively –

generalized coordinates and generalized forces 2S =
[∣∣∣2s(i)1

∣∣∣ , ∣∣∣2s(i)2

∣∣∣] so that:

f3

({
1x

(i)
0 ,1 x

(i)
1

}
,
{
1x

(i)
0 ,1 x

(i)
2

})
=

[{∣∣∣1s(i)1

∣∣∣ , ∣∣∣2s(i)1

∣∣∣} ,
{∣∣∣1s(i)2

∣∣∣ , ∣∣∣2s(i)2

∣∣∣}] (24)

a polar graph is obtained

→
X(i)

00
=

→

X
(i)
0

3

=

[ →
2X

(i)
0

f

, f3

]
(25)

Polar equation [4,5], in the case of oriented polar graph
→
X(i)

00
, can be formulated as:[

1s
(i)
1

1s
(i)
2

]
=

[
Y

(i)
11 0

0 Y
(i)
22

][
2s

(i)
1

2s
(i)
2

]
(26)

The set of equations (26) is a particular case of equation (16).
In the case of analysis of n–segment model of the system, composed of subsys-

tems with constant section, vibrating torsional subsystem of mechatronic system, it
is modeled by the loaded graph of the second category with n three–vertices–blocks,
connected to those vertices to which the corresponding generalized coordinates are
assigned (see i.e. [4, 5]).

In this way the weighted hypergraph (as a model of torsional vibrating me-
chanical and/or mechatronic system) may provide to the basis for the formalization
which is the necessary condition of numerical discretization of the considered class
of continuous mechanical systems as a part of discrete – continuous mechatronic
system.
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5. Review of synthesis methods of the mechanical and/or mechatronic
systems represented by different category graphs

In this paper is showed how one of the methods, which were applied in order to
synthesize the dynamical characteristic of the torsional vibrating mechanical sys-
tem, may be applied to synthesis the mechatronic system with cascade structure
as well. This is continued fraction expansion method distribution of characteristic
represented by different category graphs [4–6].

5.1. The synthesis of the mechanical subsystem of mechatronic system
by the continued fraction expansion method

Using notion of graph and of hypergraph [2] and system of notation [4, 5, 20], meth-
ods of mechanical subsystem as task of the synthesis of dynamical characteristic –
mobility has been presented.

If characteristic - dynamical flexibility is given in form (17) then after trans-
formations V (s) =s Y (s) and Richards’ transformation r = thΓs [4–9] the mobility
(17) has been obtained as (18).

The method of the synthesis of transformed mobility function V (r) is presented
here, assuming the even number of elements, and when k is an even natural number,
then V (r) takes form

V (r) =
ckr

k + ck−1r
k−1 + ...+ c0

dk−1rk−1 + dk−3rk−k + ...+ d1r
. (27)

After dividing in (27) the numerator by denominator – it is a first step of the
synthesis – the equation below is obtained

V (r) = V (1)
r (r) +

Lk−2(r)

Mk−1(r)
= V (1)

r (r) +
1

Mk−1(r)
Lk−2(r)

(28)

= V (1)
r (r) +

1

U2(r)
=

r

c
(1)
r

+
1

U2(r)

where: c
(1)
r is value of ”i” synthesized discrete elastic element.

The second step is the realization of the function U2(r) into (28). When dividing
Mk−1(r) by Lk−2(r), U2(r) takes form

U2(r) = U (2)
z (r) +

Mk−3(r)

Lk−2(r)
= U (2)

z (r) +
1

Lk−2(r)
Mk−3(r)

(29)

= U (2)
z (r) +

1

V3(r)
= J (2)

z r +
1

V3(r)

where:J
(i)
z –value of ”i” synthesized discrete inertial element.

The graphs of synthesized mechanical bar or/and mechatronic system after op-
eration (28) and (29) are shown in Fig. 3 and 4.



Formulating of Diverse Task of Chosen Class ... 39

Figure 3 Graphical illustration of equation (28)

Figure 4 Graphical illustration of equations (28) and (29)

The process of the synthesis after steps (28) and (29) is to be continued until the
function Uk(r) will take form

Uk(r) = U (k)
z (r) = J (k)

z r (30)

Finally the mobility (27) as a continued fraction is obtained in form

V (r) = V (1)
r

1

U
(2)
z (r) + 1

V
(3)
r (r)+ 1

U
(4)
z (r)+ .

=
r

c
(1)
r

+
1

J
(2)
z (r) + 1

r

c
(3)
r

+ 1

J
(4)
z r+ .

. .(31)

. .

+
1

V
(k−1)
r (r) + 1

U
(k)
z (r)

+
1

r

c
(k−1)
r

+ 1

J
(k)
z

The form (31) corresponds with mobility function (27) of a polar graph X
00

(see

Fig. 5). The mobility determined at the point indicated by the arrow is identical
with (27). This graph is a model of discrete system but after transformation it is a
continuous system (comp. [4]).

Next causes realized after transformations as continuous torsional vibrating me-
chanical systems as subsystems of mechatronic systems were considered in [6].



40 Buchacz, A.

Figure 5 Graphical illustration of equation (31)

6. Last remarks

Applied method and received results can make up the introduction to the synthesis
of considered class systems – torsional vibrating mechatronic ones with constant
changeable cross–section. The problems will be presented in future works.
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