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The model of the equations of generalized magneto–thermoelasticity based on Lord–
Shulman theory (LS) with one relaxation time, Green–Lindsay theory (GL) with two
relaxation times, as well as the classical dynamical coupled theory (CD), is used to study
the electro–magneto–thermoelastic interactions in a semi–infinite perfectly conducting
solid. The entire elastic medium is rotating with a uniform angular velocity. There an
initial magnetic field acts parallel to the plane boundary of the half–space. Reflection
of magneto–thermoelastic waves under generalized thermoelasticity theory is employed
to study the reflection of plane harmonic waves from a semi–infinite rotating elastic
solid in a vacuum. The expressions for the reflection coefficients, which are the relations
of the amplitudes of the reflected waves to the amplitude of the incident waves, are
obtained. Similarly, the reflection coefficients ratios variation with the angle of incident
under different conditions are shown graphically. Comparisons are made with the results
predicted by the three theories in the presence and absence of rotation.

Keywords: Reflection, thermal relaxation times, generalized thermo–elasticity theories,
electro–magneto–thermoelastic couple

1. Introduction

There are two generalization of the classical theory of thermoelasticity. The first
generalization is proposed by Lord-Shulman [1] and is known as LS theory which
involves one relaxation time for a thermoelastic process. The second generalization
is due to Green and Lindsay [2] and is known as GL theory that takes into account
two parameters in relaxation times. The governing equations for displacement and
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temperature fields in the linear dynamical theory of classical thermoelasticity con-
sist of the coupled partial differential equation of motion and Fourier’s law of heat
conduction equation. The equation for displacement field is governed by a hyper-
bolic wave equation, whereas, that of the temperature field is a parabolic diffusion
type equation. However, the classical thermoelasticity predicts a finite speed for
predominantly elastic disturbances, but an infinite speed for predominantly ther-
mal disturbances that are coupled together. In view of LS theory [1], a part of every
solution of the equations extends to infinity. In view of the mathematical difficulty
involved in the coupled equations of thermo–elasticity, several authors including
Roy Choudhuri and Debnath [3], Roy Choudhuri [4], Chandrasekharaiah and Deb-
nath [5] and Mukhopadhyay and Bera [6] have considered only one–dimensional
problems.

To two–dimensional multi–field coupled generalized heat conduction problems,
owing to the mathematical difficulties encountered in these coupled problem, the
problems becomes too complicated to approach analytically. Numerical techniques,
instead of analytical methods, have to be resorted to solving this kind of problems.
Based on the theories of generalized thermoelasticity, In [7] a two–dimensional
electro–magneto–thermoelastic problem was dealt with for a finitely conducting
half–space by Laplace and Fourier transforms. In [8] and [9] the normal mode anal-
ysis was applied to a two–dimensional electro–magneto–thermoelastic plane waves
problem of a medium of perfect conductivity. Othman [10-12] used the normal
mode analysis to study the effect of rotation on plane waves in generalized thermo–
elasticity with one and two relaxation times.

The theory of magneto-thermoelasticity is concerned with the interacting effects
of applied magnetic field on the elastic and thermoelastic deformations of a solid
body. This theory has aroused much interest in many industrial appliances, par-
ticularly in nuclear devices, where there exists a primary magnetic field, various
investigation are to be carried out by considering the interaction between mag-
netic, thermal and strain fields. Analyses of such problems also influence various
applications in biomedical engineering as well as in different geomagnetic studies.

In this paper, the generalized thermoelastic theory is applied to study the reflec-
tion of plane wave under a constant magnetic field for a thermally and electrically
conducting half-space elastic media nearby a vacuum. The reflection coefficient
ratios of various reflected waves with the angle of incidence have been obtained
for dynamical coupling theory, LS theory and GL theory. Also the effects of ap-
plied magnetic field and thermal coupling are discussed numerically and illustrated
graphically.

2. Formulation of the Problem and Basic Equations

We consider the problem of a thermo–elastic half–space (z ≥ 0). A magnetic field
with constant intensity H = (0, Ho, 0) acts parallel to the bounding plane (take
as the direction of the y–axis). Thus, all quantities considered will be functions of
the time variable t and of the coordinates x and z. The elastic medium is rotating
uniformly with an angular velocity Ω = Ωn, where n is a unit vector representing
the direction of the axis of rotation. The displacement equation of motion in the
rotating frame of reference has two additional terms [4]: Centripetal acceleration,
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Ω× (Ω × u) due to time-varying motion only and the Corioli’s acceleration 2Ω× u̇
where u is the dynamic displacement vector. These terms don’t appear in non-
rotating media.

Due to the application of initial magnetic field H, there results an induced
magnetic field h and an induced electric field E. The simplified linear equations
of electrodynamics of slowly moving medium for a homogeneous, thermally and
electrically conducting elastic solid are,

curlh = J + εoĖ (1)
curlE = −µoḣ (2)
divh = 0 (3)

E = −µo(u̇×H) (4)

where u̇ is the particle velocity of the medium, and the small effect of temperature
gradient on J is also ignored. The dynamic displacement vector is actually measured
from a steady–state deformed position and the deformation is supposed to be small.

The displacement equation of motion in a rotating frame of reference is

ρ [ü + Ω× (Ω× u) + 2Ω× u̇] = (λ + µ)∇(∇·u) + µ∇2u + µo(J×H)

−γ

(
1 + νo

∂

∂t

)
∇T (5)

In the absence of the body force and inner heat source, the generalized electro–
magneto–thermoelastic governing differential equations in the context of three dif-
ferent theories are

σi j = 2µei j + λeδi j − γ(T − To + νoṪ )δi j (6)

the heat conduction equation

kT ,i i= ρ CE

(
1 + τo

∂

∂ t

)
Ṫ+ γT o

(
1 + δ τo

∂

∂ t

)
u̇i ,i. (7)

and strain–displacement relations

ei j=
1
2
(ui,j+uj, i). (8)

In the above equations, a comma followed by a suffix denotes material derivative and
a superposed dot denotes the derivative with respect to time, i, j = x, z. Moreover,
the use of the relaxation times νo, τo and the parameters δ make the aforementioned
fundamental equations possible for the three different theories:

1. The equations of the coupled thermoelasticity, when:

νo = τo = 0, δ = 0 (9)

Eqs (5) and (7) has the form

ρ [ü + Ω× (Ω× u) + 2Ω× u̇] = (λ + µ)∇(∇·u) + µ∇2u

+µo(J×H)− γ∇T (10)
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kT ,i i= ρCE Ṫ+ γTou̇i ,i (11)

2. Lord and Shulman’s theory [1], when:

νo = 0 , δ = 1 , τo > 0 . (12)

where τo is the relaxation time and Eq. (5) is the same as Eq. (10) and (7) has the
form:

kT ,i i= ρCE

(
1 + τo

∂

∂t

)
Ṫ+ γT o

(
1 + τo

∂

∂t

)
u̇i ,i (13)

3. Green and Lindsay’s theory [2], when:

δ = 0, νo ≥ τo > 0. (14)

where νo, τo are the two relaxation times, Eq. (5) remains without change and
Eq. (7) has the form:

kT ,i i= ρCE

(
1 + τo

∂

∂ t

)
Ṫ+ γT o u̇i ,i (15)

4. The correspondent equations for the generalized thermoelasticity without rota-
tion results from the above mentioned cases by taking Ho = Ω = 0. The displace-
ment components have the following form

ux= u(x, z, t ) , uy= 0 , uz= w(x, z, t ) (16)

From Eqs (8) and (16), we obtain the strain components

ex x=
∂ u

∂ x
, ey y= 0 , ezz =

∂ w

∂ z
, exy= ey z = eyy = 0.

exz=
1
2

(
∂u

∂z
+

∂w

∂x

)
, e =

∂u

∂x
+

∂w

∂ z
= ui,i (17)

From Eqs (6) and (17), the stress components are given by

σx x = ( λ + 2 µ )u,x+ λw,z − γ (T − To + νoṪ ) (18)

σzz = ( λ + 2 µ )w,z+ λu,x − γ (T − To + νoṪ ) (19)
σxy = µ (u,z + w,x ) (20)

The components of the magnetic intensity vector in the medium are

Hx= 0 , Hy= Ho + h(x, z, t ) , Hz= 0 (21)

The electric intensity vector is normal to both the magnetic intensity and the dis-
placement vectors. Thus, it has the components

Ex= E1 , Ey= 0 , Ez= E3 (22)

The current density vector J be parallel to E, thus

Jx= J1 , Jy= 0 , Jz= J3 (23)
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From Eqs (1)–(4) and (5), we get (in this paper y–axis is the direction of the axis
of rotation)

ρ

[
∂2u

∂t2
− Ω2u + 2Ωẇ

]
= (λ + µ)

∂e

∂x
+ µ∇2u− γ

(
1 + νo

∂

∂t

)
∂T

∂x

−µoHo
∂h

∂x
− εoµ

2
oH

2
o

∂2u

∂t2
(24)

ρ

[
∂2w

∂t2
− Ω2w − 2Ωu̇

]
= (λ + µ)

∂e

∂z
+ µ∇2w − γ

(
1 + νo

∂

∂t

)
∂T

∂z

−µoHo
∂h

∂z
− εoµ

2
oH

2
o

∂2w

∂t2
(25)

We introduce the displacement potentials ϕ and ψ by the relations

u = ϕ, x + ψ, z , w = ϕ, z − ψ, x (26)

we can obtain from Eqs (1)–(4)

h = −Ho∇2ϕ (27)

For convenience, the following non–dimensional variables are used:

x̄i =
xi

CT ω∗
, ūi =

ui

CT ω∗
, ϕ̄ =

ϕ

(CT ω∗)2
, ψ̄ =

ψ

(CT ω∗)2
,

t̄ =
t

ω∗
, τ̄o =

τo

ω∗
, ν̄o =

νo

ω∗
, Ω̄ = ω∗Ω, (28)

T̄ =
γ(T − To)

λ + 2µ
, σ̄i j =

σi j

µ
, h̄ =

h

Ho
, i = 1, 2.

In terms of the non-dimensional quantities defined in Eq. (28), the above governing
equations reduce to (dropping the bar for convenience)

β2[αü− Ω2u + 2Ωẇ] = (β2 − 1)
∂e

∂x
+∇2u− β2

[
1 + νo

∂

∂t

]
∂T

∂x

−RH
∂h

∂x
(29)

β2[αẅ − Ω2w − 2Ωu̇] = (β2 − 1)
∂e

∂z
+∇2w − β2

[
1 + νo

∂

∂t

]
∂ T

∂z

−RH
∂h

∂z
(30)

∇2T = (1 + τo
∂

∂t
)Ṫ + ε(1 + δτo

∂

∂t
)ė (31)

The constitutive equations reduce to

σxx = ( β2 − 2 ) e + 2 u,x − β2( T + νo
∂ T

∂ t
), (32)

σz z = ( β2 − 2 ) e + 2 w,z − β2 (T + νo
∂ T

∂ t
), (33)
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σxz = u,z + w,x. (34)

In the subsequent analysis we are taking into consideration the case of low speed so
that centrifugal stiffening effects can be neglected. By differentiating Eq.(29) with
respect to x, and Eq. (30) with respect to z, then adding, we obtain

[α
∂2

∂ t2
− Ω2 − ( 1 + RH)∇2] ϕ = −2Ω

∂ ψ

∂ t
− ( 1 + νo

∂

∂ t
)T , (35)

by differentiating (29) with respect to z and (30) with respect to x and subtracting
we obtain

[ β2α
∂2

∂ t2
− β2Ω2 −∇2] ψ = −2β2Ω

∂ ϕ

∂ t
, (36)

∇2T − ( 1 + τo
∂

∂ t
) Ṫ − ε ( 1 + δ τo

∂

∂ t
)∇2 ϕ̇ = 0, (37)

Eq. (27) has the form
h = −∇2ϕ . (38)

where RH is the number of magnetic pressure. It is a measure of the relative
importance of magnetic effects in comparison with mechanical ones. ε is the usual
thermoelastic coupling parameters.

3. Solution of the problem

For a harmonic wave propagated in the direction, where the wave normal lies in
the xz–plane, and makes an angle θ with the z–axis, we assume the solutions of the
system of Eqs (35)–(37) in the form:

{ϕ, T, h,ϕ } (x, z, t) = [ϕ1, T 1, h1, ϕ1] exp { i ξ ( x sin θ + z cos θ )− ω t } (39)

where is the wave number and ω is the complex in the circular frequency.
Substituting from Eq. (39) into Eqs (35)–(38), we arrive at a system of four

homogeneous equations:

(ξ2β1 + αω2 − Ω2)ϕ1 + ν′oT1 − 2ωΩψ1 = 0 (40)
(αω2β2 + ξ2 − β2Ω2)ψ1 − 2ωΩβ2ϕ1 = 0 (41)

(ξ2 − ωτ ′o)T1 + ωεξ2τ ′n ϕ1 = 0 (42)
−ξ2ϕ1 + h1 = 0 (43)

in which, ν′o = 1− ω νo, τ ′o = 1− ω τo, τ ′n = 1− ω δ τo.
The system of Eqs (40)–(43) has non–trivial solutions if and only if the deter-

mination of the factor matrix vanishes. So
∣∣∣∣∣∣∣∣

( ξ2β1 + α ω2 − Ω2) ν′o 0 −2ω Ω
−2ω Ωβ2 0 0 ( β2α ω2 − β2Ω2 + ξ2)
ω ε ξ2τ ′n ( ξ2 − ω τ ′o) 0 0
− ξ2 0 1 0

∣∣∣∣∣∣∣∣
= 0 (44)

This yields
ν6 + A ν4 + B ν2 + C = 0 (45)
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where

A = ω
{

α2β2ω4 − α ω2
[
τ ′o ω + β2

(
β1τ

′
o ω + 2 Ω2 + ε ν′oτ ′n ω

) ]

+ Ω2
[
τ ′oω + β2

(
β1τ

′
oω + Ω2 + ε ν′oτ ′nω − 4ω2

) ] } /
E

B = ω3
[−ε ν′oτ ′nω + α ω2 − Ω2 − β1

(
τ ′oω − α β2ω2 + β2Ω2

) ] /
E

C = β1ω
5
/

E,

E = − β2τ ′o
(
α2ω4 − 4ω2Ω2 − 2α ω2Ω2 + Ω4

)

and ν = ω/ξ is the velocity of coupled waves (the dilatational waves and rotational
waves are coupled due to the existence of rotating).

The solution of Eq.(45) can be given below:

v2
1 =

24/3
(
1 + i

√
3

)
M1 −M3

[
4A + 22/3

(
1− i

√
3

)
M3

]

12 M3
(46)

v2
2 =

24/3
(
1− i

√
3

)
M1 −M3

[
4A + 22/3

(
1 + i

√
3

)
M3

]

12 M3
(47)

v2
3 =

−24/3M1 + M3

(−2 A + 22/3M3

)

6 M3
(48)

in which

M1 = −A2 + 3 B,

M2 = −2 A3 + 9AB − 27C,

M3 =
(

M2 +
√

4 M3
1 + M2

2

)1/3

where v1, v2 and v3 are the velocities of three waves. We can call them P1, P2 and
P3 wave.

(1) For incident P3 wave:

Since Eq. (45) is a cubic in ν2, there shall be three coupled waves traveling with
three different velocities. So assuming that the radiation into vacuum is neglected,
when a coupled wave falls on the boundary z = 0 from within the elastic medium,
that will make an angle θ with the negative direction of the z–axis, and the two
reflected waves that will make angles θ1, θ2 with the same direction (see Figure1).
The incident wave is a coupled (rotational and dilatational) wave because of the
existence of rotation. The displacement potentials ϕ, ψ and T will take the following
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forms:

ϕ = A1 exp {iξ1(xsinθ1 − zcosθ1)− ωt}
+A2exp {iξ2(xsinθ2 − zcosθ2)− ωt}
+B1exp {iξ3(xsinθ + zcosθ)− ωt}
+B2exp {iξ3(xsinθ − zcosθ)− ωt} (49)

ψ = η1A1 exp{iξ1(x sin θ1 − z cos θ1)− ωt}
+η2A2 exp{iξ2(x sin θ2 − z cos θ2)− ωt}
+η3B1 exp{iξ3(x sin θ + z cos θ)− ωt}
+η3B2 exp{iξ3(x sin θ − z cos θ)− ωt} (50)

T = γ1A1exp {iξ1(xsinθ1 − zcosθ1)− ωt}
+γ2A2exp {iξ2(xsinθ2 − zcosθ2)− ωt}
+γ3B1exp {iξ3(xsinθ + zcosθ)− ωt}
+γ3B2exp {iξ3(xsinθ − zcosθ)− ωt} (51)

in which

ηi =
2ωΩβ2

αω2β2 + ξ2
i − β2Ω2

γi =
2ωΩηi − (ξ2

i β1 + αω2 − Ω2)
ν′o

(52)

i = 1, 2, 3

Figure 1 Relation between the incident angle and the reflect angle

The ratios of the amplitudes of the reflected waves and amplitude of the incident
wave A1

B1
, A2

B1
, B2

B1
give the corresponding reflection coefficients. Also it may be

noted that the angles θ, θ1, θ2 and the corresponding wave numbers ξ3, ξ1, ξ2 are
to be connected by the relations below:

ξ3sin θ = ξ1sin θ1 = ξ2sin θ2. (53)
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on the interface z = 0 of the medium, relation (49) may also be written as:

sinθ

ν3
=

sinθ1

ν1
=

sinθ2

ν2
(54)

(2) For incident P1 wave:
We consider the normal of the incident wave that makes an angle θ with the

negative direction of the z–axis. There will be two reflected waves. One will make
angle θ with the direction of the z–axis, and the other two reflected waves will make
angles with the same direction (see Figure 1). The displacement potential ϕ and ψ
will take the following form

ϕ = B1exp {iξ1(xsinθ + zcosθ)− ωt}
+B2exp {iξ1(xsinθ − zcosθ)− ωt}
+A1exp {iξ2(xsinθ1 − zcosθ1)− ωt}
+A2 exp {iξ3(xsinθ2 − zcosθ2)− ωt} (55)

ψ = η1B1exp {iξ1(xsinθ + zcosθ)− ωt}
+η1B2exp {iξ1(xsinθ − zcosθ)− ωt}
+η2A1exp {iξ2(xsinθ1 − zcosθ1)− ωt}
+η3A2exp {iξ3(xsinθ2 − zcosθ2)− ωt} (56)

T = γ1B1exp {iξ1(xsinθ + zcosθ)− ωt}
+γ1B2exp {iξ1(xsinθ − zcosθ)− ωt}
+γ2A1exp {iξ2(xsinθ1 − zcosθ1)− ωt}
+γ3A2exp {iξ3(xsinθ2 − zcosθ2)− ωt} (57)

also the angles θ , θ1 , θ2 and the corresponding wave numbers, ξ1, ξ2, ξ3 are to be
connected by the relations below

ξ1sin θ = ξ2sinθ1 = ξ3sinθ2 (58)

on the interface z = 0 of the medium, relation (53) may also be written as:

sinθ

ν1
=

sinθ1

ν2
=

sinθ2

ν3
(59)

4. Boundary conditions

Since the boundary z = 0 is adjacent to vacuum, it is free from surface traction. So
the boundary condition can be expressed as

σzj = 0 ( j = x, y, z ) on z = 0. (60)

Assuming that the boundary z = 0 is thermally insulated. This means that the
following relation will be

∂T

∂z
= 0 on z = 0 (61)
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5. Expressions for the reflection coefficients

(1) For incident P3 wave:
Using the conditions (55), (56) and Eqs (48)–(51) we can obtain the following

relations
A1

B1
a11 +

A2

B1
a12 +

B2

B1
a13 = b1 (62)

A1

B1
a21 +

A2

B1
a22 +

B2

B1
a23 = b2 (63)

A1

B1
a31 +

A2

B1
a32 +

B2

B1
a33 = b3 (64)

in which

a1i =
(sin 2 θi − ηicos2θi) ν2

3

ν2
i

a2i =

[(
2− β2

)− 2 cos2θi − ηisin2θi

]
v2
3

ν2
i

− β2γiν
2
3

ω2

a3i =
cosθi

νi

(
ω2β1

ν2
i

+ αω2 − Ω2 − 4Ω2β2ω2

αω2β2 + ω2
/
ν2

i − β2Ω2

)

i = 1, 2, 3, θ3 = θ

b1 = sin2θ + η3cos2θ

b2 = −
[(

2− β2
)− 2 cos2θ + η3 sin 2θ − β2γ3ν

2
3

ω2

]

b3 = −a33

The solution of this system for the reflection coefficients A1
B1

, A2
B1

and B2
B1

is

X1 =
A1

B1
=

P1

Q1
, X2 =

A2

B1
=

P2

Q1
, X3 =

B2

B1
=

P3

Q1
(65)

in which

P1 = b1 (a23a32 − a22a33) + b2 (a12a33 − a13a32)
+b3 (a13a22 − a12a23) (66)

P2 = −b1 (a23a31 − a21a33)− b2 (a11a33 − a13a31)
−b3 (a13a21 − a11a23) (67)

P3 = b1 (a23a31 − a21a32) + b2 (a11a32 − a12a31)
+b3 (a12a21 − a11a22) (68)

Q1 = a11 (a23a32 − a22a33) + a12 (a21a33 − a23a31)
+a13 (a31a22 − a21a32) (69)

(2) For incident P1 wave:
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Using boundary conditions (60), (61) and Eqs (55)–(57) we can obtain the fol-
lowing relations

B2

B1
c11 +

A1

B1
c12 +

A2

B1
c13 = d1 (70)

B2

B1
c21 +

A1

B1
c22 +

A2

B1
c23 = d2 (71)

B2

B1
c31 +

A1

B1
c32 +

A2

B1
c33 = d3 (72)

in which

c1i =
(sin2ϑi − ηicos2ϑi) ν2

1

ν2
i

c2i =

[(
2− β2

)− 2 cos2ϑi − ηisin2ϑi

]
v2
1

ν2
i

− β2γiν
2
1

ω2

c3i =
cosϑi

νi

(
ω2β1

ν2
i

+ α ω2 − Ω2 − 4Ω2β2ω2

αω2β2 + ω2
/
ν2

i − β2Ω2

)

i = 1, 2, 3, ϑ1 = θ, ϑ2,3 = θ1,2

d1 = sin2θ + η1cos2θ

d2 = −
[(

2− β2
)− 2cos2θ + η1sin2θ − β2γ1ν

2
1

ω2

]

d3 = c31

The solution of this system for the reflection coefficients A1
B1

, A2
B1

and A3
B1

is

X1 =
B2

B1
=

R1

Q2
, X2 =

A1

B1
=

R2

Q2
, X3 =

A2

B1
=

R3

Q2
(73)

in which

R1 = d1 (c23c32 − c22c33) + d2 (c12c33 − c13c32)
+d3 (c13c22 − c12c23) (74)

R2 = −d1 (c23c31 − c21c33)− d2 (c11c33 − c13c31)
−d3 (c13c21 − c11c23) (75)

R3 = d1 (c23c31 − c21c32) + d2 (c11c32 − c12c31)
+d3 (c12c21 − c11c22) (76)

Q2 = c11 (c23c32 − c22c33) + c12 (c21c33 − c23c31)
+c13 (c31c22 − c21c32) (77)

6. Special case: in the absence of rotating

In this case we put Ω = 0 and here

ν2
3 = − 1

αβ2
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Also in this case the dilatational wave and rotational wave are uncoupled.
For incident rotational wave:

Here the displacement potentials ϕ, ψ and T will take the following forms:

ϕ = A1exp {iξ1(xsinθ1 − zcosθ1)− ωt}
+A2exp {iξ2(xsinθ2 − zcosθ2)− ωt} (78)

ψ = B1exp {iξ3(xsinθ + zcosθ)− ωt}
+B2exp {iξ3(xsinθ − zcosθ)− ωt} (79)

T = γ1A1exp {iξ1(xsinθ1 − zcosθ1)− ωt}
+γ2A2exp {iξ2(xsinθ2 − zcosθ2)− ωt} (80)

The solution of this system for the reflection coefficients A1
B1

, A2
B1

and B2
B1

satisfy
Eqs (62)–(64) and aij (i, j = 1, 2, 3) are given below

a1j =
ν2
3

ν2
j

sin2θj

a2j = ν2
3

[
β2 − 2− β2β1

ν2
j

+
2 cos2θj

ν2
j

− αβ2

]

a3j =
cosθj

νj
(
β1

ν2
j

+ α), j = 1, 2

a13 = −cos2θ , a23 = sin2θ, a33 = 0

For incident dilatational wave:

Here the displacement potential will take the following form

ϕ = B1exp {iξ1(xsinθ + zcosθ)− ωt}
+B2exp {iξ1(xsinθ − zcosθ)− ωt} (81)

ψ = A2exp {iξ3(xsinθ2 − zcosθ2)− ωt} (82)
T = γ1B1exp {iξ1(xsinθ + zcosθ)− ωt}

+γ1B2exp {iξ1(xsinθ − zcosθ)− ωt}
+γ2A1exp {iξ2(xsinθ1 − zcosθ1)− ωt} (83)

[α
∂2

∂t2
− (1 + RH)∇2]ϕ = −(1 + νo

∂

∂t
)T

The solution of this system for the reflection coefficients A1
B1

, A2
B1

and B2
B1

satisfy



Reflection of Magneto–thermo–elastic Waves... 17

Eqs (70)–(72) and aij (i, j = 1, 2, 3) are given below

c1j =
ν2
1

ν2
j

sin2ϑj

c2j = ν2
1

[
β2 − 2− β2β1

ν2
j

+
2 cos2ϑj

ν2
j

− αβ2

]

c3j =
ν3
1cosϑj

ν3
j

(
β1 + αν2

j

)
, j = 1, 2, ϑ1 = θ, ϑ2 = θ1

c13 = −ν2
1

ν2
3

cos2θ2

c23 =
ν2
1

ν2
3

sin2θ2, c33 = 0, d1 = c11, d2 = −c21, d3 = c31

7. Numerical Results

The copper material is chosen for numerical evaluations. In these solutions the
circular frequency ω is expressed by a complex number, namely, ω = ωo + i ζ, where
i is an imaginary unit, eω t = eωot( cos ζ t + i sin ζ t ), so the waves must attenuate.
In other words, the waves cannot arrive at the region near the boundary surface.
In fact we used ω = ωo (ωois a real number) in this paper, so the waves can arrive
at the region near the boundary surface. The other constants of the problem are
taken as β2 = 3.95596, νo = 0.03, τo = 0.02, ε = 0.0168,

Figure 2 gives the variation of the reflection coefficients ratios with the angle of
incidence for incident P1 and P3 waves under three theories (CD, LS and GL) in the
presence of rotation. Here RH = 0.3,Ω = 0.01, ωo = 5 . We can see that in the case
of incident P3 wave, the reflection coefficient ratio |X1| = |X2| = 0whenθ = 00, 900.
|X3| = 1 when θ = 00, 900. Also we observed that the effect of relaxation times
acts to decrease the amplitude of reflection coefficient ratios. In the case of incident
P1 wave, the reflection coefficient ratio |X2| = |X3| = 0 when θ = 00, 900 and
|X1| = 1 when θ = 00, 900. And the same effect of relaxation times can be
observed in |X1| , |X2|.

Figure 3 gives variation of the reflection coefficients ratios with the angle of
incidence for incident rotational and dilatational waves under three theories (CD,
LS and GL) in the absence of rotation. We can see there has great difference for
reflection coefficients ratio due to essential difference for incident waves. Figure
4 gives the effect of rotation on reflection coefficient ratios for incident P3 and
P1 waves. Here RH = 0.3, ωo = 5, and Ω = 0.01, 0.03, 0.05, respectively. The
reflection coefficient ratios |X1| , |X3| for incident P3 wave and |X3| for incident
P1 wave decreases with the increase of Ω. While for incident P3 and P1 waves
the reflection coefficient ratio |X2| increase with the increase of Ω. So we can
conclude that the rotation plays an important role for different incident waves.
Figures 5 gives the effect of magnetic field on the reflection coefficient ratio. Here
ωo = 5.0, Ω = 0.01 and RH = 0.0, 0.3, 0.5, respectively. Clearly the magnetic field
has a salient influence on the reflection coefficients ratio. Also we can see that for
incident P3 wave, |X1| , |X3| decrease with the increase of the intensity of magnetic
field and |X2| increase with the increase of the intensity of magnetic field.
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Figure 2 Variation of reflection coefficients ratio with incident angle P1 and P2 wave under three
theories in presence of rotation
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Figure 3 Variation of reflection coefficients ratio with incident angle for P1 and P3 wave under
three theories in absence of rotation



20 Othman, MIA, Song, Y

0 30 60 90
0.00

0.12

0.24

0.36

(4-a)

¦ =̧0.01

¦ =̧0.03

¦ =̧0.05

6X16

q

0 30 60 90
0.00

0.04

0.08

0.12

(4-b)

¦ =̧0.01

¦ =̧0.03

¦ =̧0.05

6X26

q

0 30 60 90

0.96

0.99

1.02

(4-c)

¦ =̧0.01

¦ =̧0.03

¦ =̧0.05

6X36

q

0 30 60 90

0.4

0.6

0.8

1.0

(4-d)

¦ =̧0.01

¦ =̧0.03

¦ =̧0.05

6X16

q

0 30 60 90
0.00

0.12

0.24

0.36

(4-e)

¦ =̧0.01

¦ =̧0.03

¦ =̧0.05

6X26

q

0 30 60 90
0.0

0.2

0.4

0.6

(4-f)

¦ =̧0.01

¦ =̧0.03

¦ =̧0.05

6X36

q

Figure 4 Effect of rotation on variation of reflection coefficients ratio for incident angle P1 and
P3 wave under LS theory
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Figure 5 Effect of magnetic field on variation of reflection coefficients for incident P1 and P3
wave under LS theory
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Figure 6 Variation of reflection coefficients ratio with angle of incident for incident P1 and P2
wave in different frequency under LS theory
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For incident P1 wave, |X1| , |X2| decrease with the increase of the intensity
of magnetic field and |X3| increase with the increase of the intensity of magnetic
field. Figure 6 gives the variation of the angle of incidence with the reflection
coefficient ratios for different values of frequency under LS theory. Here RH = 0.3,
Ω = 0.01 and ωo = 1.0, 5.0, 10.0, respectively. We observed the effect of frequency
is prodigious.

8. Conclusions

We can obtain the following conclusions according to the analysis above:
1. The reflection coefficient ratio depends on the angle of incidence, the nature

of this dependence is different for different reflected waves.
2. The rotation and magnetic field play a significant role and the two effects

have the inverse trend for reflection coefficient ratios.
3. The thermal frequency has a very great influence on the reflection coefficient

ratio.
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Nomenclature

λ, µ Lame’s constants
ρ density
CE specific heat at constant strain
t time
T absolute temperature
To reference temperature chosen so that |(T − To)/To| << 1
σij components of stress tensor
eij components of strain tensor
ui components of displacement vector
k thermal conductivity
J current density vector
µo magnetic permeability
εo electric permeability
C2

T =(λ + 2µ)/ρ

CL =
√

µ/ρ velocity of transverse waves
c2 = 1/µoεo sound speed
e cubical dilatation
αt coefficient of linear thermal expansion
γ =(3λ + 2µ)αt

ε = γ2To/ρ2CEC2
T

C2
A = µoH

2
o/ρ

CA the Alfven speed
α = 1 + C2

A/c2

β2 = C2
T /C2

L

ω∗ = k/ρCEC2
T

RH = C2
A/C2

T


