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Solution of the Gaussian Transfer Orbit Equations of Motion
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This article deals with an orbit transfer problem by the application of only one motor
thrust engine impulse at any point (r , v) on the elliptic initial orbit. The terminal orbits
are elliptic. We consider the coplanar non-limited duration case. We succeeded to attain
an analytical solution for the transfer Lagrange–Gauss modulated equations of motion.
We selected the eccentric anomaly to be the independent parameter. We evaluated the
integrals that appear in the R.H.S. of the equations of motion for da/dE, de/dE and
edω/dE. Accordingly the three elements defining the final orbit are determined from
(a− ao), (e− eo), e(ω − ωo).
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1. Introduction

The problem of orbit transfer is evidently essential for space flight exploration. It
is also necessary and very interesting to assign the most economic procedures for a
certain orbit transfer or rendezvous. There are numerical as well as analytical proce-
dures for optimization problems. For such requirements the problem is complicated
even if we neglect the perturbative acceleration.[1].

In this analysis we assume coplanar orbits without limitation of duration. In
our treatment we assume a single point of attraction of a given mass. The space
vehicle follows a Keplerian initial orbit. At initial instance t1 = 0 the space vehicle is
revolving in an elliptic orbit, whilst at time t2 the vehicle will be on another assigned
elliptic orbit, after the consumption of minimum latent velocity of its propulsion.
The rendezvous problem is more complex than the simple transfer one, because
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this is not the case of unlimited time [2]. We investigate in this article the simple
transfer problem, and we shall confine ourselves to the orbital element alternations
due to instantaneous motor thrust engines propulsion.

We take the direction of peri–apse of the initial elliptic orbit as the reference of
direction, and the sense of rotation is also that of the initial orbit. The initial and
final elliptic orbits (terminal orbits) are completely defined by a1, e1, a2, e2, $2

respectively. Rendezvous and perturbation influences are discarded in our treatment
[2].
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Figure 1 Orbit

OA = OP = FB = a

OB = b

OF = c

FP = P

FA = A

r =
p

1 + e cos f
= a(1− e cosE)

2. Derivation of Equations of Motion: da/dE, de/dE and edω/dE

In the coplanar case, the classical Lagrangian equations of motion, in the Gaussian
form are

da

dt
=

2a

nb
[Se sin f + T (1 + e cos f)] (1)

de

dt
=

b

na2
[S sin f + T (cos f + cosE)] (2)

dω

dt
=

b

nac
[−S cos f + T (sin f +

a

b
sin E)] (3)
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We assume S , T to be the radial and transverse components respectively,

S = γsinφ

(4)
T = γcosφ

where
φ is the angle between the velocity vector and the transverse component of

acceleration.
γ is the acceleration due to the impulse of propulsion defined by

Vc =
t∫
0

|~γ|dt is characteristic velocity

The quantities enclosed in the brackets could be expressed in terms of the ec-
centric anomaly E, using the following formulae (Appendix A)

sinϕ =
1 + e cos f√

1 + e2 + 2e cos f
cos ϕ =

e sin f√
1 + e2 + 2e cos f

(5)

sin f =
√

1− e2 sinE

1− e cosE
cos f =

cos E − e

1− e cos E
(6)

The independent variable t (physical time) may be replaced by the eccentric anomaly
E via the relation

dt =
1− e cos E

n
dE (7)

Substituting (4) into (1), (2), (3), we get

da

dt
=

2aγ

nb
[e sinφ sin f + (1 + e cos f) cos φ] (8)

de

dt
=

bγ

na2
[sin φ sin f + (cos f + cosE) cos φ] (9)

e
dω

dt
=

bγ

na2
[− sin φ cos f + (sin f +

a

b
sin E) cos φ] (10)

The change to the eccentric anomaly E as an independent variable is achieved by
substituting (5), (6), (7) into (8), (9), (10) which leads to [3], [4]:

da

dE
=

4γ
√

1− e2

n2

e sinE√
1− e2 cos2 E

(11)

de

dE
=

bγ

n2a2

sin E√
1− e2 cos2 E

[(1− e2 cos2 E) + 2e cosE − 2e2] (12)

e
dω

dE
=

γ

n2a2

1√
1− e2 cos2 E

[(3e− 2e3)− cos E

(13)
−(2e− e3) cos2 E + e2 cos3 E]
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3. Integration (Solution of the Equations of Motion)

The equations of motion (11), (12), can be easily integrated using elementary cal-
culus.

Integration of the equation (11) gives

∆a = a− ao =
4γ
√

1− e2

n2
cos−1(e cos E) (I)

In equation (12) we put the substitution

u = e cos E

Thus the equation can be transformed into the simple form
∫

de =
bγ

n2a2

[
−1

e

∫ √
1− u2du− 1

e

∫
udu√
1− u2

+ 2e

∫
du√

1− u2

]

which can be integrated to give

∆e = e− eo =
γb

n2a2

[
(
2
e
− 1

2
) cos E

√
1− e2 cos2 E − (

1
2e
− 2e) sin−1(e cos E)

]
(II)

Now we shall consider the third integral on the R.H.S. of (13), which may be written
as

∫
dω =

γ

n2a2

[
(4− 2e2 − 2

e2
)
∫

dE√
1− e2 cos2 E

− 1
e2

∫
e cos E√

1− e2 cos2 E
dE

(14)

−(1− 2
e2

)
∫ √

1− e2 cos2 EdE +
1
e

∫
e2 cos3 E√

1− e2 cos3 E
dE

]

By the use of the relations in Appendix (B), we can calculate the required integrals
in Eq. (13). We obtain

e∆ω = e(ω − ω0) =
γ

n2a2

[
4− 2e2 − 2/e2

√
1− e2

EllipticF [E,
−e2

1− e2
]

− 1
e2

sinh−1

(
e sin E√
1− e2

)
+

2− e2

e2

√
1− e2EllipticE[E,

−e2

1− e2
] (III)

− 1
2e

sin E
√

1− e2 cos2 E +
1 + e2

2e2
sinh−1

(
e sinE√
1− e2

)]

where EllipticF [φ, k] and EllipticE[φ, k] are respectively the elliptic integrals of
the first and second kind, defined as

EllipticF [φ, k] =

φ∫

0

1√
1− k2 sin2φ

dφ (15)

EllipticE[φ, k] =

φ∫

0

√
1− k2 sin2 φdφ (16)
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Here k is known as the modulus and φ is the amplitude.
Summarizing the results, we can write the variations in the orbital elements due

to instantaneous motor thrust engines propulsion as:

∆a = a− ao =
4γ
√

1− e2

n2
cos−1(e cosE) (17)

∆e = e− eo =
γb

n2a2

[
(
2
e
− 1

2
) cos E

√
1− e2 cos2 E

(18)

−(
1
2e
− 2e) sin−1(e cosE)

]

e∆ω = e(ω − ω0) =
γ

n2a2

[
−2(1− e2)3/2

e
EllipticF [E,

−e2

1− e2
]

−1− e2

2e
sinh−1

(
e sin E√
1− e2

)
+

(2− e2)
√

1− e2

e
EllipticE[E,

−e2

1− e2
] (19)

−1
2

sin E
√

1− e2 cos2 E

]

4. Conclusion

An instantaneous single motor thrust engine propulsion is induced at a given point
on the initial Keplerian elliptic orbit. Consequently the components of propulsion
acceleration after the impulse affect the motion of the space vehicle and then the
yields an alternation in the orbital elements estimated by the equations for a− ao,
e− eo, e(ω−ωo), after the solution of the equations of motion in its Gaussian form.
We assume that no change in the plane of the initial orbit occurs. The propulsion is
in the positive direction of the tangential velocity vector, which coincides with the
proceeding direction. We selected the eccentric anomaly E, as being the indepen-
dent variable, instead of the physical time t, because it is more convenient to adopt,
facilitates the analysis and remove slow convergence difficulties. The solution of the
problem is represented by the integration of the three equations for da/dE, de/dE
and edω/dE.

Elliptic integrals appear through the implementation of the interaction process.
In the Appendix we list the values of the auxiliary quantities involved in the trigono-
metric calculations and evaluation of the elliptic integrals (of the first and second
kinds). The integrations may be carried out numerically. This article is a first time
detailed treatment for elliptic – elliptic orbit transfer using the Gaussian form of
the equations of motion, when a unique propulsion impulse is operated.
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Auxiliary Formulae and Evaluation of Elliptic Integrals

Appendix (A)

We utilized the formulae for cos φ, sin φ, cos f , sin f Eqs. (5), (6) to derive Eqs.
(11), (12), (13). Moreover, we have

r =
a(1− e2)
1 + e cos f

r = a(1− e cosE)

dt

df
=

(1− e2)3/2

n(1 + e cos f)
dt

dE
=

1− e cosE

n

It is found preferable to choose E as the independent variable, because of reasons
mentioned in the text. To change the parameter from f → E we adopt the two
body problem relationships:

sin f =
√

1− e2 sinE

1− e cosE

cos f =
cos E − e

1− e cos E

The independent physical time t may be replaced by the eccentric anomaly E, via
the relation

dt =
1− e cos E

n
dE
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We also have the expressions

sin ϕ sin f =
(1− e2) sin E

(1− e cos E)
√

1− e2 cos2 E

cos ϕ cos f =
e sin E(cos E − e)

(1− e cos E)
√

1− e2 cos2 E

sin ϕ cos f =
√

1− e2(cosE − e)
(1− e cosE)

√
1− e2 cos2 E

cos ϕ sin f =
e
√

1− e2 sin2 E

(1− e cosE)
√

1− e2 cos2 E

cos ϕ cos E =
e(1− e cosE) sin E cosE

(1− e cos E)
√

1− e2 cos2 E

cos ϕ sin E =
e(1− e cosE) sin2 E

(1− e cos E)
√

1− e2 cos2 E

1 + e2 + 2e cos f =
(1− e2)(1 + e cosE)

(1− e cos E)

Appendix (B) To derive the equations for da/dE, de/dE and edω/dE we
encounter the following integrals [5]:

(1)
∫ √

1− e2 cos2 EdE =
√

1− e2EllipticE[E,
−e2

1− e2
]

(2)
∫

1√
1− e2 cos2 E

dE =
1√

1− e2
EllipticF [E,

−e2

1− e2
]

(3)
∫

cosE√
1− e2 cos2 E

dE =
1
e

sinh−1

(
e sin E√
1− e2

)

(4)
∫

cos2 E√
1− e2 cos2 E

dE =
1
e2

[
1√

1− e2
EllipticF [E,

−e2

1− e2
]

−
√

1− e2EllipticE[E,
−e2

1− e2
]
]

(5)
∫

cos3 E√
1− e2 cos2 E

dE =
1

2e3

[
(1 + e2) sinh−1

(
e sinE√
1− e2

)

−e sin E
√

1− e2 cos2 E
]
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Nomenclature
~γ acceleration due to the propulsion

Vc =
t∫
0

|~γ| dt characteristic velocity = latent velocity

a= OA = OP = FB semi–major axis
e eccentricity
b = a

√
1− e2 semi–minor axis

p = a(1− e2) parameter
c = ae focal distance
$ longitude of peri – apse
f true anomaly
E eccentric anomaly
n mean motion
µ = n2a3 gravitational constant
~r position vector
~V velocity vector
~H = | ~r ∧ ~V

∣∣∣ moment of momentum vector

H =
∣∣∣ ~H

∣∣∣ = nab magnitude of the moment of momentum vector

ξ = − µ
2a = −µ

r + V 2

2 energy
P = FP = a (1 - e) peri–apse distance 0 ≤ P ≤ p ≤
A = FA = a (1 + e) apo–apse distance ≤ b ≤ a ≤ A


