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The main aim of this paper is to make a comparison of the eigenfrequencies of the high
telecommunication towers alternatively manufactured using the stainless steel and the
aluminium components. It is provided each time assuming that the Young modulus
of the applied material is the Gaussian input random variable and using the general-
ized stochastic perturbation method using the global version of the Response Function
Method. Up to the fourth order probabilistic moments and characteristics are computed
in the three dimensional Finite Element Method model of the tower composed from the
continuous linear elastic edge beams spanned by the large number of the linear elastic
bars. A computational part of the work is made using the hybrid usage of the computer
algebra system MAPLE and the FEM engineering package ROBOT used widely in the
civil engineering practice.
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1. Introduction

The telecommunication towers undoubtedly belong to the class of the lightweight
structures exhibited to the stochastic influence of the wind blow and since that,
their reliability needs to be evaluated with respect to the strength, to maximum
deflections and rotations as well as to the eigenfrequencies. The uncertainty in the
structural response of the towers and masts in general follows the quasi–periodic
and temporary ice covers increasing both mass and effective surfaces of the struc-
tural elements, temperature fluctuations leading to the significant thermal stresses
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not necessarily uniformly influencing the entire structure (concerning dominating
southern exposure to the sun heating). The separate role in overall uncertainty mag-
nitude play the geometrical imperfections in the elements connections (especially
in welds) and the elements themselves since material defects following productions
stage and composite character of the micro– and nanostructure. Because aluminium
has decisively more micro–compounds in its total volume, randomization of the ba-
sic material properties is even more justified than for stainless steels and, finally, a
random dispersion of those properties needs to be significantly larger.

It is known from the engineering practice that the telecommunication structures
(towers, masts and antennas) designing and manufacturing is still relatively new and
the very modern area for the engineers and scientists because the development of the
mobile phones is still in progress and may demand the brand new extensions in the
nearest future. Therefore, an optimization of the relevant supporting structures’
shape and the materials’ design is still an ongoing development – an example is
alternative usage of the aluminium and steel based supporting towers.

On the other hand, the engineering reliability analysis is still being developed,
concerning at least the demands of the Eurocodes and, at the same time, acquisition
of various stochastic methods in engineering practice [1, 8–11]. It is widely known,
that the reliability measured with some indices must be computed not only for
the load capacity and maximum deflections of some structures but also for their
vibrations and fatigue under dynamic loads, which needs further, more advanced
stochastic computer methods.

These are the main reasons to investigate the matter of comparison of the alu-
minium and steel manufactured telecommunication structures in the presence of
uncertainty in material properties of the structural components. We study random
fluctuations of the eigenvibrations modes for the same towers made of steel and,
than of aluminium to discuss in this context their reliability issues and we assume in
this case that the Young modulus of both materials is a truncated Gaussian random
variable with the given expected value and the coefficient of variation being an extra
input parameter to this analysis. The generalized stochastic perturbation technique
is employed to achieve this goal since the expected time savings (with respect to the
Monte–Carlo technique) and a determination of up to the fourth order probabilistic
moments and coefficients (in addition to the other stochastic methods).

Computational part is provided using the Finite Element Method engineering
system ROBOT, where all the eigenfrequencies are determined with respect to the
initially modified Young moduli of both towers. Further computations of the re-
sponse functions, their automatic differentiation, the probabilistic moments and the
coefficients as well as their visualization are provided with the use of computer al-
gebra system MAPLE. This analysis is planned to be extended towards a full ve-
rification of the static and dynamic reliability, buckling fragility as well as including
of the fatigue and ageing phenomena into the overall structure mathematical and
computational models.
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2. Variational formulation

Let us consider the following linear elasto–dynamic problem consisting of [6]

• the equations of motion

DTσ + f̂ = ρü, x ∈ Ω , τ ∈ [t0,∞) (1)

• the constitutive equations

σ = Cε, x ∈ Ω , τ ∈ [t0,∞) (2)

• the geometric equations

ε = Du, x ∈ Ω, τ ∈ [t0,∞) (3)

• the displacement boundary conditions

u = û, x ∈ ∂Ωu, τ ∈ [t0,∞) (4)

• the stress boundary conditions

Nσ = t̂, x ∈ ∂Ωσ, τ ∈ [t0,∞) (5)

• the initial conditions

u = û0, u̇ = ˆ̇u
0
, τ = t0 (6)

It is assumed that all the state functions appearing in this system are sufficiently
smooth functions of the independent variables x and τ . Let us consider the variation
u(x, τ) in some time moment τ = t denoted by δu(x, τ). Using the above equations
one can show that

−
∫

Ω

(DT
σ + f̂ − ρü)TδudΩ +

∫

∂Ωσ

(Nσ − t̂)
T

δud(∂Ω) = 0 (7)

Assuming further that the displacement function u(x,t) has known values at the
initial moment u (x, t1) = 0 and at the end of the process u (x, t2) = 0, so that the
variations of this function also equal 0 at those time moments

δu (x, t1) = 0, δu (x, t2) = 0 (8)

Integrating by parts with respect to the variables x and τ we can obtain that

t2∫

t1

[δT−
∫

Ω

σTδεdΩ +
∫

Ω

f̂TδudΩ +
∫

∂Ω

t̂Tδud(∂Ω)]dτ = 0 (9)

where the kinetic energy of the region Ω is defined as

T =
1
2

∫
ρu̇Tu̇dΩ (10)
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We also notice that

δε = Dδu, x ∈ Ω , τ ∈ [t0,∞) (11)

Next, we introduce the assumption that the mass forces f̂ and the surface loadings
t̂ are independent from the displacement vector u, which means that the external
loadings do not follow the changes in the domain initial configuration. Therefore,
equation (9) can be modified to the following statement:

δ

t2∫

t1

(T − Jp) dτ = 0 (12)

where Jp means the potential energy stored in the entire domain Ω

Jp = U −
∫

Ω

f̂TudΩ−
∫

∂Ωσ

t̂Tud(∂Ω) = 0 (13)

whereas the variation is determined with respect to the displacement function and
U is the elastic strain energy given by the formula

U = 1
2

∫
Ω

εTCεdΩ (14)

It is well known that the equation (12) represents the Hamilton principle widely
used in structural dynamics in conjunction with the Finite Element Method ap-
proach.

3. Computational implementation

Let us consider a discretization of the displacement field u(x, τ)using the following
forms:

uα
3x1(x,τ) ∼= ϕ3xN(e)(x)qα

N(e)x1(τ), uα
3x1(x,τ) ∼= Φ3xN (x)rα

Nx1(τ) (15)

where q is a vector of the generalized coordinates for the considered finite element,
r is a vector for the generalized coordinates of the entire discretized system, N(e) is
the total number of the eth finite element degrees of freedom; N is the total number
of degrees of freedom in the structure model. The generalized coordinates vector for
the entire structure model is composed from the finite element degrees of freedom
and the transformation matrix as

rα
Nx1 = aNxN(e)q

α
N(e)x1 (16)

ϕ and Φ are the corresponding shape function matrices (local and global). Contrary
to the classical formulations of both FEM and the perturbation-based Stochastic
Finite Element Method [2,3,6], we introduce here the additional index α=1,. . . ,M
to distinguish between various solutions of the elastodynamic problem necessary
to build up the response function (around the mean value of the input random
parameter).
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The strain tensor can be expressed as

εα
6x1(x,τ) = B6xN(e)(x)qα

N(e)x1(τ) = B̃6xN (x)rα
Nx1(τ) (17)

The discretized version of the Hamilton’s principle is obtained as

δ

t2∫

t1

(
1
2

E∑
e=1

qαT mα
N(e)xN(e)

qα − 1
2

E∑
e=1

qαT kα
N(e)xN(e)

qα +
E∑

e=1
QαT

N(e)
qα

)
dτ = 0

(18)
and hence

δ

t2∫

t1

(
1
2 ṙ

αT Mαṙα − 1
2r

αT Kαrα + RαT rα
)
dτ = 0 (19)

The global mass matrix is defined as

Mα
NxN =

∫

Ω

ρα(x)B̃T
Nx6(x)B̃6xN (x)dΩ (20)

so that all partial derivatives of it with respect to random Young modulus equal to
0; the global stiffness matrix equals to

Kα
NxN =

∫

Ω(e)

B̃T
Nx6C

α
6x6B̃6xNdΩ (21)

and since 3D bar and beam elements are used in further computations (as the
linearly dependent on Young modulus), only the first partial derivatives differ from
0. Henceforth, equation (19) can be rewritten with those substitutions as

ṙαTMαδr−
∫ t2

t1

(r̈αTMα + rαTKα −RαT)δr dτ = 0 (22)

Considering the assumptions that

δr(t1) = 0, δr(t2) = 0 (23)

we finally obtain the dynamic equilibrium system

Mαr̈α + Kαrα = Rα (24)

which represents the equations of motion of the discretized system. When we com-
plete this equation with the component Cα

NxNrα
Nx1 getting

Mαr̈α + Cεṙα + Kαrα = Rα (25)

then we decompose the damping matrix as

Cα = α0Mα + α1Kα (26)

where the coefficients α0 and α1 are determined using the specific eigenfunctions
for this problem, so that
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Mαr̈α + α0Mαṙα + α1Kαṙα + Kαrα = Rα (27)

where no summation over the doubled indices α is applied here. As it is known [2],
the case of the undamped free vibrations leads to the following algebraic system:

Mαr̈α + Kαrα = 0 (28)

and the solution rα = Aα sin ωαt leads to the relation

−MαAαω2
α sin ωαt + KαAα sinωαt = 0 (29)

so that for sin ωαt 6= 0 and Aα 6= 0 there holds

−Mαω2
α + Kα = 0 (30)

4. The stochastic perturbation–based approach in the eigenproblems

4.1. The stochastic Taylor expansion with random coefficients

Let us introduce the random variable b ≡ b (ω) and its probability density function
as p(b). Then, the expected values and the mth central probabilistic moment are
defined as

E [b] ≡ b0 =

+∞∫

−∞
bp (b) db, µm (b) =

+∞∫

−∞
(b− E[b])m

p (b) db (31)

The basic idea of the stochastic perturbation approach is to expand all the input
variables and the state functions via Taylor series about their spatial expectations
using some small parameter ε > 0. In case of random quantity e = e(b), the
following expression is employed [4,7]:

e = e0 +
∞∑

n=1

1
n!ε

n ∂ne
∂bn (∆b)n (32)

where

ε∆b = ε
(
b− b0

)
(33)

is the first variation of b about b0. Symbol (.)0 represents the function value (.)
taken at the expectation b0, while (.),b,(.),bb denote the first and the second partial
derivatives with respect to b evaluated at b0, respectively. Let us analyze further
the expected values of any state function f(b) defined analogously to the formula
(3) by its expansion via Taylor series with a given small parameter ε as follows:

E [f (b) ; b] =

+∞∫

−∞
f(b)p (b) db =

+∞∫

−∞

(
f0 +

∞∑
n=1

1
n!ε

nf (n)∆bn

)
p (b) db (34)
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Let us remind that this power expansion is valid only if the state function is an-
alytic in ε and the series converge and, therefore, any criteria of convergence should
include the magnitude of the perturbation parameter; perturbation parameter is
taken as equal to 1 in numerous practical computations. From the numerical point
of view, the expansion provided by the formula (32) is carried out for the summation
over the finite number of components. Now, let us focus on an analytical derivation
of the probabilistic moments for the structural response function. It is easy to prove
that the general 6th order expansion results in the formula

E [f (b)] = f0(b) + ε∆b
∂f

∂b
+ 1

2ε2µ2 (b) ∂2f
∂b2 + 1

3!ε
3µ3(b)∂3f

∂b3

(35)

+ 1
4!ε

4µ4(b)∂4f
∂b4 + 1

5!ε
5µ5(b)∂5f

∂b5 + 1
6!ε

6µ6(b)∂6f
∂b6

where for Gaussian variables the even components need to be dropped off. Thanks
to such an extension of the random output, any desired efficiency of the expected
values as well as higher probabilistic moments can be achieved by an appropriate
choice of the distribution parameters. Similar considerations lead to the 4th order
expressions for a variance; there holds

V ar (f(b)) = ε2µ2 (b)
∂f

∂b

∂f

∂b
+ ε4µ4 (b)

(
1
4

∂2f
∂b2

∂2f
∂b2 + 2

3!
∂f
∂b

∂3f
∂b3

)

(36)

+ε6µ6(b)
((

1
3!

)2 ∂3f

∂b3

∂3f

∂b3
+ 1

4!
∂4f
∂b4

∂2f
∂b2 + 2

5!
∂5f
∂b5

∂f
∂b

)

The third order probabilistic moments are derived including the lowest orders only
as

µ3 (f (b)) =

+∞∫

−∞
(f (b)− E[f(b)])3 p (b) db

=

+∞∫

−∞

(
f0 + ε

∂f

∂b
∆b + ...− E[f(b)]

)3

p (b) db (37)

=

+∞∫

−∞

(
ε
∂f

∂b
∆b + 1

2ε2 ∂2f
∂b2 ∆b∆b + ...

)3

p (b) db

∼= 3
2ε4µ4(b)

(
∂f
∂b

)2
∂2f
∂b2 + 1

8ε6µ6(b)
(

∂2f
∂b2

)3
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Finally, the fourth probabilistic moment is approximated with the first few per-
turbation terms as

µ4 (f (b)) =

+∞∫

−∞
(f (b)− E[f(b)])4 p (b) db

=

+∞∫

−∞

(
f0 + ε

∂f

∂b
∆b + ...− E[f(b)]

)4

p (b) db (38)

= ε4µ4(b)
(

∂f

∂b

)4

+ 3
2ε6µ6(b)

(
∂f
∂b

∂2f
∂b2

)2

+ 1
16ε8µ8(b)

(
∂2f
∂b2

)4

Let us mention that it is necessary to multiply in each of these equations by
the relevant order probabilistic moments of the input random variables to get the
algebraic form convenient for any symbolic computations. Therefore, this method
in its generalized form is convenient for all the random distributions, where the
above mentioned moments may be analytically derived (or at least computed for a
specific combination of those distributions parameters). Finally, one may recover
the kurtosis and the skewness after their well–known definitions as

κ (f (b)) =
µ4 (f (b))
σ4 (f (b))

− 3, β (f (b)) =
µ3 (f (b))
σ3 (f (b))

(39)

and, independently, the reliability index for the particular eigenfrequencies as

R (f (b)) =
E

(
f̂ − fα

)

σ
(
f̂ − fα

) (40)

where the pair
(
f̂ ; fα

)
denotes the induced frequency of the vibrations and the addi-

tional eigenfrequency. The relevant civil engineering codes state that this difference
cannot be smaller than 25% of the eigenfrequency, so that Eqn. (40) may serve for
the straightforward estimation of the reliability for the structures subjected to the
dynamic excitations.

4.2. Eigenfrequencies determination via the response function method

As shown during derivation of equations for the generalized perturbation based
approach, one of the most complicated issues is a reliable numerical determination of
up to nth order partial derivatives of the structural response function with respect to
the randomized parameter. It is possible to determine this function first by multiple
solutions of the boundary value problem around the expectation of the random
parameter to complete this task. The response function for each eigenvalue is built
up from uniform symmetric discretization in the neighborhood of this expectation,
with equidistant intervals. A set of classical deterministic re–computations of the
all the components of the eigenvalues vector leads to the final formation of the
responses function for all ωα. That is why we consider further a problem of the
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unknown response function approximation by the following polynomial of n-1 order
[5]:

ωα = A
(α)
1 bn−1 + A

(α)
2 bn−2 + ... + A(α)

n b0 (41)

having the values of this function determined computationally for n different argu-
ments. With this representation, the algebraic system of equations is formed





A
(α)
1 bn−1

1 + A
(α)
2 bn−2

1 + ... + A
(α)
n b0

1 = ωα(1)

A
(α)
1 bn−1

2 + A
(α)
2 bn−2

2 + ... + A
(α)
n b0

2 = ωα(2)

...

A
(α)
1 bn−1

n + A
(α)
2 bn−2

n + ... + A
(α)
n b0

n = ωα(n)

(42)

where the coefficients ωα(i) for i=1,. . . ,n denote the approximated function values
in ascending order of the arguments bi. Therefore, the following algebraic system
of equations is formed to determine the polynomial coefficients A

(α)
i :




bn−1
1 bn−2

1 ... b0
1

bn−1
2 bn−2

2 b0
2

... ... ...
bn−1
n bn−2

n ... b0
n








A
(α)
1

A
(α)
2

...

A
(α)
n





=





ωα(1)

ωα(2)

...
ωα(n)





(43)

The crucial point in this method is a proper determination of the set of input
parameters

{
b0
1, ..., b

0
n

}
inserted into this equation. This determination is started

with a choice of the computational domain [b−∆b, b + ∆b], where 2∆b = 0.05b.
Then, this domain is subdivided into the set of equidistant n–1 intervals with the
length ∆b(m,m+1) = 2∆b

n−1 for any m=1,..,n-1. So that assuming that b0 = b−∆b it
is obtained that bm = b−∆b + m 2∆b

n−1 . Let us note that since this linear system of
equations is non–symmetric, its solution cannot be done by the integration with the
FEM solver, and some separate numerical procedure based on the Gauss–Jordan
elimination scheme must be employed. The unique solution for this system makes
it possible to calculate up to the nth order ordinary derivatives of the homoge-
nized elasticity tensor with respect to the parameter b at the given b0 as 1st order
derivative

∂ωα

∂b
= (n− 1)A

(α)
1 bn−2 + (n− 2) A

(α)
2 bn−3 + ... + A

(α)
n−1 (44)

2nd order derivative

∂2ωα

∂b2
= (n− 1) (n− 2)A

(α)
1 bn−3 + (n− 2) (n− 3) A

(α)
2 bn−4 + ... + A

(α)
n−2 (45)

kth order derivative

∂kωα

∂bk
=

k∏

i=1

(n− i) A
(α)
1 bn−k +

k∏

i=2

(n− i) A
(α)
2 bn−(k+1) + ... + A

(α)
n−k (46)
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Providing that the response function of the structural eigenvalue has a single
independent argument, that is, the input random variable of the problem, it is
possible to employ the stochastic perturbation technique based on the Taylor rep-
resentation to compute up to the mth order probabilistic moments µm(ωα). It is
clear from the derivation above that to complete the mth order approximation we
need to solve the initial deterministic problem m times, with its number of degrees
of freedom and a single system of algebraic equations mxm, to find a single response
function. Including the formulas above for the derivatives of the response function
in a definition of the probabilistic moments, one can determine the expectations,
variances as well as any order random characteristics of the structural response.

5. Numerical illustrations

Computational analysis has been provided on the example of the steel telecom-
munication tower with the height equal to 42.0 meters discretized with 396 two–
noded linear elastic beams and bars having common 165 nodal points and presented
schematically in Fig. 1. The cross–sectional areas in both towers are (1) exactly
the same and (2) optimally designed to fulfill the strength criteria concerning the
aluminium usage, which automatically means some overdesigning load capacity ef-
fect on the steel version of this tower. Further computational experiments will deal
with the optimally chosen cross–sections for the steel and aluminium made profiles,
where the expected values for the steel members of the Young modulus is taken as
E [Es] = 210 GPa and we have for aluminium E [Ea] = 75 GPa. The geometrical
data for the specific cross–sections are contained in Tab. 1.

Segment
no

Tower legs Tower braces

1 RO Ø 60,3x3,6 mm RO Ø 22,0x2,0 mm
2 RO Ø 60,3x3,6 mm RO Ø 25,0x3,0 mm
3 RO Ø 76,1x5,0 mm RO Ø 38,0x4,0 mm
4 RO Ø 88,9x6,3 mm C 30x30x3 mm
5 RO Ø 88,9x6,3 mm C 30x30x3 mm
6 RO Ø 114,3x6,3 mm C 40x40x3 mm
7 RO Ø 114,3x6,3 mm C 40x40x3 mm

The results of computational modeling are presented in Figs 2–7, where we have
in turn: the expected values, standard deviations, kurtosis, skewness as well as
the reliability index for both aluminium (left graphs) and steel structures (right
graphs). They are all shown with respect to the coefficient of variations of the
Young modulus for the tower basic designed material; this coefficient belongs to
the interval [0.00,0.20], which is relatively wide interval considering maximum 10%
random dispersion accompanying most of experimental tests in this case. Further,
it is important that all those moments and coefficients have been determined using
the sixth order perturbation approach.
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Figure 1 Static scheme and photo of the telecommunication tower

As it is apparent from both graphs in Fig. 2, the expected values for the eigenfre-
quencies from 1st to 13th are clearly very similar to each other for both materials. It
follows directly the analytical results for the eigenfrequencies of the elastic beams,
where, independently from the boundary conditions of the simple beam, those fre-
quencies are proportional to the Young modulus and intertia moment, while in-
versely proportional to the mass of the element (into the square root). Let us recall
here that the ratio of the Young moduli for aluminium and steel is very similar to
the ratio of their unit masses, so that this conclusion seems to be very well justified.
Let us note that the intermediate eigenfrequencies differ from each other here, so
that it cannot be concluded precisely that they are always almost equal (see 11th

and 12th eigenfrequencies, for instance). The sensitivity of the expected values with
respect to the input coefficient of variation α is, however somewhat different – steel
structure exhibits no such a sensitivity, while in the case of aluminium tower – the
expectations show no sensitivity until α=0.15, while for larger values – may increase
or decrease as well.

Further, we analyze the standard deviations, necessary in the reliability index,
as well as the output coefficients of variation, also for particular eigenfrequencies.
It is quite clear that the model is linear in the probabilistic sense, because the ratio
of output and input coefficients of variation remains constant. We notice also the
apparent damping since 0.10–0.12 is obtained for both materials from 0.20 as the
input value of the parameter α and it also follows the analytical result recalled
above.
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Figure 2 Expected values of the eigenvalues for the aluminium and steel towers

Figure 3 Standard deviations of the eigenvalues for the aluminium and steel towers
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Figure 4 Coefficients of variation of the eigenvalues for the aluminium and steel towers

Figure 5 Kurtosis of the eigenvalues for the aluminium and steel towers
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Figure 6 Skewness of the eigenvalues for the aluminium and steel towers

Figure 7 Reliability index in eigenvibrations analysis of the aluminium and steel towers
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Higher damping is noticed for the steel tower, where additionally the results for
particular eigenfrequencies are less dispersed than for the aluminium structures.

Kurtosis given in Fig. 5, however, is apparently different for both materials –
they both start from 0 for the input coefficient of variation close to 0 to some mostly
negative values for the aluminium and relatively small positive as well as negative
values in the case of steel (closer to 0). Contrary to the previous moments and
coefficients, the fourth order quantities are computed with lower accuracy lost with
larger values of α, so that the results are restricted to the 10% input random disper-
sion; this is also the case of skewness as the result of the third order approximations
(see Fig. 6). These skewnesses exhibit similar properties as the kurtosis – in the
sense that they have smaller absolute values for steel tower than for the aluminium
one. Steel structure shows a linear interrelation between output skewness and in-
put coefficient of variation of the Young modulus. This is absolutely not the case
of aluminium tower eigenfrequencies, where this interrelation does not seem to be
linear, while the minimum values apparently differ from 0. Trying to generalize
those results one may notice that Gaussian Young modulus of the tower result
in the eigenfrequencies being almost Gaussian, when the tower is made of steel,
whereas the final distributions of aluminium eigenfrequencies are more distant from
the Gaussian one (due to negative skewness and kurtosis).

Finally, we study the variations of the reliability index as the function of the
input uncertainty for α belonging to the interval [0.0, 0.10]. The results obtained
for both materials are quite similar – the larger input coefficient of variation, the
smaller final reliability index value. It is known from the Eurocode 0 regulations,
that the unconditional structural safety is preserved in the case of reliability index
larger than about 4.5. Fig. 7 shows clearly that the safety margin for both struc-
tures is rather small, because this limit value is reached for the eigenfrequencies
lower or equal to 10th at the input coefficient α = 0.07 (for aluminium) and for
α = 0.07 (in the case of steel). This structure is, however, never safe in the view
of higher eigenfrequencies, because for the entire variability of input coefficient of
variation the final reliability index is equal or smaller than 4. It is seen that the
structure safely designed according to the strength and deflections condition not
necessarily exhibit full safety in the view of eigenvibrations analysis. One needs to
remember also that usually input coefficient of variation increases together with the
exploitation time, so that the graphs, provided may be directly interpreted during
full stochastic reliability analysis, after a sensible calibration of time versus input
random dispersion level.

6. Concluding remarks

The main result of the analyses presented in this paper is that the eigenfrequencies
expectations computed for aluminium and steel towers are very close to each other,
which follows almost identical interrelations of the Young moduli and densities of
both materials. Both materials exhibit probabilistic damping in free vibrations
analysis decreasing almost twice the input uncertainty level. The probabilistic dis-
tributions for all eigenfrequencies in the steel tower are essentially closer to the
Gaussian origin than for the aluminium tower, where both skewness and kurtosis
show clearly negative values. The reliability analysis is also straightforward pro-
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cedure with the Stochastic Finite Element Method perturbation–based technique
implemented provided that the direct difference in–between induced frequency of
vibrations and the eigenfrequency is declared in percents with respect to this last
quantity. Otherwise, of course, full stochastic forced vibrations analysis is neces-
sary, which needs further extensive developments of the SFEM procedures. There
is no doubt that the computer algebra system plays the crucial role in the com-
putational strategy – one may try to use this hybrid strategy with the response
function method in addition to the other probability density functions, especially
for the lognormal variables, where all central moments of any order have additional
analytical forms. Otherwise, some further numerical techniques must be employed
to recover those moments for the needs of specific input random variables confi-
guration. The structural open research problems may be for instance the SFEM
analysis of stochastic earthquake vibrations applied at the foundations of such to-
wers, significantly influencing stochastic reliability of those structures.
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