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In this paper we show the method of calculation of nonlinear normal modes and its
application to mechanical coupled systems. We present bifurcation diagram of nonlinear
normal modes in three degree of freedom system. We show the appearance of internal
resonances and their important role in dynamics of nonlinear coupled oscillators.
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1. Introduction

Exploring dynamics of nonlinear systems cause a lot of problems, still there is no
universal technique to predict their behavior [1, 2]. In this paper we focus our
attention on the conservative coupled systems. It is well known fact that analysis
of such systems can give a view on the underlying dynamics of slightly dissipative
oscillators, i.e., large class of mechanical and structural systems [3].

To explore dynamics of conservative systems one can calculate the nonlinear
normal modes (NNMs) [3–7].The idea of NNMs comes directly from the theory of
the linear vibration, where the linear normal modes (LNMs) are taken into account.
The motion of the linear system is governed by eigenfrequencies, for N coupled os-
cillators one can calculate N eigenfrequencies and corresponding eigenvectors, for
this frequencies coupled oscillators behave like decoupled, independent systems.
Frequency of their motion is given by eigenfrequency and initial configuration for
each eigenfrequency by eigenvectors. The NNMs are extension of this idea for con-
servative nonlinear systems (for low total energy in the system, where nonlinearity
usually have small influence on the dynamics and NNMs overlap with LNMs).

There are two main definitions of NNMs, we present them in the chronological
order. Rosenberg [8] defines NNMs as a vibration in union, which mean that all
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coupled systems reach extreme amplitudes (maximums or minimums) and cross zero
in the same time. This is quite natural continuation of LNMs, newer less the motion
of nonlinear system is much more complex then the linear’s one, thus this definition
do not take into account its all properties (like resonances between oscillators). The
next definition was given by Shaw and Pierre [3, ], the NNMs where defined as
an invariant manifolds in the phase space. Such approach let us calculate NNMs,
but invariant manifolds have complicated structure and in most cases it is hard to
compute them. There are a lot other analytical techniques to solve NNMs problem,
but the main assumptions is the small nonlinearity and few DoFs [3–8]. There are
large number of constants of motion for each DoF in the analytical calculation and
it is a problem to cope with dozens of them. That is why numerical techniques were
applied. The most natural software is AUTO [9] where one can continue periodic
solutions (PSs) in parameter space, finding also all bifurcations. The other approach
is presented in [10] and can be used also to compute NNMs for systems modeled by
finite elements, i.e., discretized beams, shells ect.

The paper is organized as follows. In Sec. 2 we give a brief description how to
calculate NNMs in AUTO. Section 3 describes the considered model. The numerical
results are discussed in Sec. 4. Finally, our results are summarized in Sec. 5.

2. How to compute NNM in AUTO

In this section we show how the NNMs can be calculated in AUTO. First we describe
the algorithm of calculation of PSs which is used in AUTO, than we show how
practically compute NNMs.

2.1. Algorithm

The algorithm of PSs calculation in AUTO is very sophisticated, here we describe
just the main idea. Assume the system of equations is given in the following form:

ẋ = F (x, λ) (1)

where x = (x1, . . . , xN )T , F (x) is a matrix of the right hand side and λ is a
continuation parameter. Finding PSs in such systems lead to solution of N bound-
ary value problem with N + 1 parameters. Assuming, we have the proper starting
point (x0, λ0) for continuation (how to find it is described later) AUTO is using
the pseudo arc-length continuation [11] (see Fig. 1) to calculate next points along
the branch of PSs. The pseudo arc–length continuation has two steps: predictor
and corrector. The predictor step let us calculate, basing on knowledge of start-
ing point z0 = (x0, λ0), the next point z1 = (x1, λ1) which lay on the branch
of PSs. The initial approximations of the tangent vector z∗1 is given by following
formula z∗1 = z0 + ż0∆s, where ż0 is a unit tangent to z0 vector, ∆s is a step
size which can modified during computation. The next step is corrector, where by
Newton–Raphson algorithm the initial guess is corrected to the proper solution.
The correction is made on perpendicular direction to vector to . Finally, after some
iterations, one can obtain point which is a PS. To calculate next point along the
branch the predictor – corrector procedure is repeated. The detailed description of
the pseudo arc–length continuation can be found in [9,11].
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Figure 1 Schematic plot of pseudo arc length continuation

2.2. Practical implementation

Continuation package AUTO is dedicated to calculation of PS in many class of
systems, however in case of conservative systems the straight forward calculations
are impossible, the equation must be in the special form [13]. Let us take under
consideration the dynamical system given by the following equation:

x′(t) = f(x(t), λ) (2)

where f : Rn ×R→ Rn and λ ∈ R is a continuation parameter. After rescaling
Eq. (2) and adding boundary values condition one have to solve the following set
of equation:

x(τ)
′
1 = T1f (x(τ)1) + λ1∂E/∂x(τ)1

x(0)1 = x(1)1,∫ 1

0
x(τ)T

1 x(τ)
′
0dτ = 0,

(3)

where T1 ∈ R is a unknown period of PS, τ ∈ (0, 1) is a rescaled time, boundary
condition in second line are periodic condition (values of amplitudes of vector are
the same for τ = 0 and for τ = 1) and integral, in the last row of Eq. (3), ensure the
uniqueness of the solution. In Eq. (3) there are two natural continuation parameter
period T1 and λ1, both of are used to calculate NNM. Contrary, to scheme presented
in previous subsection now one has (N + 2) unknowns, six boundary condition and
one integral, primary continuation parameter is T1 and secondary λ1.

2.3. Stability of periodic solution and bifurcations in AUTO

The stability of PSs can be easily calculated using Floquet theory [12]. Eigenvalues
of monodromy matrix govern the stability of PSs. This eignevalues are complex
numbers and called Floquet multipliers (FMs). If all FMs are enclosed in an unit
circle the PS is stable and if one of them is outside the PS is unstable, for PS there
is always one trivial FM at +1. The typical bifurcation (changes of stability of PS)
are saddle–node (when one FM crosses the unit circle by +1), torus bifurcation
(when pair of complex conjugate FMs cross the unit circle) and period doubling
bifurcation (when one FM crosses the unit circle by -1). In AUTO one can observe
also so called branching point (BP) which indicate the appearance of new branches
of PS.
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3. Model of the system

As a model we considered 3–DoF mechanical oscillator presented in Fig. 2. In our
calculation we assumed, for simplicity, dimensionless parameters. Transformation
of coordinates to this form is easy and was shown for example in Perlikowski et. al.
[14]. Also to present fundamental properties the dimensionless parameter are most
suitable. Equations of system shown in Fig. 2, after rescaling of time, are given by

Figure 2 General scheme of the system

six first ordinary differential equations:

ẋ(τ)1 = Tx(τ)2
ẋ(τ)2 = T (−kx(τ)1 − k (x(τ)1 − x(τ)3))/m
ẋ(τ)3 = Tx(τ)4
ẋ(τ)4 = T (−k (x(τ)3 − x(τ)1)− k (x(τ)3 − x(τ)5))/m
ẋ(τ)5 = Tx(τ)6
ẋ(τ)6 = T (−kx(τ)5 − kdx(τ)35 − k (x(τ)5 − x(τ)3))/m

(4)

where m is a dimensionless mass of the each system, k is a dimensionless stiffness
of linear spring, kd is a dimensionless stiffness of nonlinear part of spring, T is a
period of PS and τ ∈ (0, 1) is rescaled time. Motion of oscillators is frictionless . In
our calculation we assumed k = 1, m = 1 and kd = 0.25.

As it was mentioned before to compute NNM in AUTO it is necessary to trans-
form system in to special form. The total energy E of system is given by following
equation:

E = 0.5(x(τ)22 + x(τ)24 + x(τ)26) + 0.5kx(τ)21 + 0.5k(x(τ)1 − x(τ)3)2+
+0.5k(x(τ)3 − x(τ)5)2 + 0.5kx(τ)25 + 0.5kdx(τ)45

(5)

After taking in to consideration Eqs (3, 4, 5) we reach final form:

ẋ(τ)1 = Tx(τ)2 + λ (2x(τ)1 − x(τ)3)
ẋ(τ)2 = T (−2x(τ)1 + x(τ)3) + λx(τ)2
ẋ(τ)3 = Tx(τ)4 + λ (2x(τ)3 − x(τ)1 − x(τ)5)
ẋ(τ)4 = T (−2x(τ)3 + x(τ)1 + x(τ)5) + λx(τ)4
ẋ(τ)5 = Tx(τ)6 + λ

(
2x(τ)5 − x(τ)3 − 0.5x(τ)35

)
ẋ(τ)6 = T (−2x(τ)5 − 0.5x(τ)35 + x(τ)3) + λx(τ)6

(6)

where λ is controlling parameter which should be zero during the whole calcu-
lation. The boundary conditions and integral condition correspond to presented in
Eq. (3).
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4. Numerical examples

The first step in the calculation of NNMs is determination of starting points –
beginning of branches of NNMs because for zero energy E NNMs overlap with LNMs
one can do this by solving eigenproblem det|A − λeI| = 0 where A is a linearized
right hand side matrix of system (4), λe is a vector of eigenvalues of matrix A
and I is an identity matrix. For considered system there are three solution:T =
[8.209, 4.443, 3.400] where T = 2π/

√
(λe). The frequency of oscillation is given by

ω = 1/T , so the starting values are: ω = [0.122, 0.225, 0.294].

Figure 3 NNMs in energy–frequency plots: (a) two branches of NNMs, (b) third branch of NNMs,
green and red color indicate the stable and unstable periodic solutions. The loop observed in first
branch of NNMs in (a) show occurrence of inner resonances (for details see Fig. 4). In (c–e) the
time traces of each system for fixed values of energy (log E = 1.75) and frequency ω = 0.144(c),
ω = 0.259(d), ω = 0.39(e). In (c) all oscillators are in–phase oscillation, in (d) second and third are
in anti–phase motion to first one and in (e) first and third are in–phase and second in anti–phase
to them.

The typical way of presenting NNM is an energy-frequency plot, where the logarithm
of total system energy E (see Eq. (5)) is plotted versus frequency of oscillation ω.
In numerical calculation we used RAUTO [15]. In Fig. 3a,b we show branches
of NNMs, for better visibility we present them on two plots. One can easily see
that till log E = 0 the frequency is constant, so the nonlinearity has neglecting
influence on the motion of the system. For larger energy levels values of frequencies
start to increasing, especially strongly for third branch. We limit our calculation
to upper bound log E = 3, which is large energy and in practice hardly ever met.
In Fig. 3a there is a loop on the first branch which indicates the internal resonance,
the detailed description of this phenomena is shown in Fig. 4. Now, let us show the
shape of PSs on different branches for fixed values of energy (log E = 1.75). The
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corresponding frequencies are: in Fig. 3c ω = 0.144, in Fig. 3d ω = 0.259, in Fig.
3e ω = 0.39. In Fig. 3c all oscillators are in–phase oscillations, in Fig. 3d second
and third are in anti–phase motion to first one and in Fig. 3e first and third are
in–phase and second in anti–phase to them. The influence of nonlinearity on shape
of periodic solution is visible especially in Fig. 3c where the trace of third oscillator
is strongly deformed.

In Fig. 4 we show the detailed investigations of internal resonances, which
are crucial points for nonlinear systems. In Fig. 4a one can see the zoom of the
resonance loop for the first branch (frequency of first branch resonate with frequency
of third branch), circles correspond to saddle-node bifurcations (SN) and plus to
branching point (BP). The BP in Fig. 4a indicate touching with branch which have
the initial period three times higher than first branch (if there exist the branch with
initial period T there are also branches with initial period 2T , 3T and so on), we
do not plot this branches here. The SN cause change of stability along the branch
of PS.

Figure 4 NNMs in energy–frequency plots: (a) first branch of NNMs, (b) second branch of NNMs,
green and red color indicate the stable and unstable periodic solutions. The loops observed along
the branches of NNMs indicate the occurrence of internal resonances between coupled systems. In
(c–f) one can see time traces of oscillators in resonances. In (c) for the first branch and in (e) for
second one can see 1:1:3 locking and in (d) for second branch 1:1:2 locking. For all cases first and
second oscillators stay in in-phase motion (c) or in anti–phase motion (d, e) while third one show
motion with period 2 or 3.

In Fig. 3c one can see time traces for log E = 2.39 and log E = 1.75. It is clearly
visible that resonance is 1:1:3, i.e., for one period of first and second oscillators
third one has three periods. In Fig. 4b we show internal resonances for second
branch (also resonance with third branch), they occur for larger values of energy
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but it is interesting to show them. The first branch is a 1:1:2 locking, this branch
appear from BP and also finished in BP, at the sharp edge of this branch met with
period 2T branch. The next branch indicate 1:1:3 resonance. If one follow the main
branch further there is a next branching point - the starting point of branch with
1:1:4 locking. In Fig, 4d,e one can find time traces of oscillators for points indicate
in Fig. 4b, once again the resonant is the third oscillator, first and second are in
anti-phase motion. The stability of NNMs play important role when looking on the
dynamics of slightly damped systems, where some structure of oscillation preserve,
and jumps between stable PSs can be observed.

5. Conclusions

In this paper we show the NNNs for coupled mechanical systems calculated in
AUTO. One can observe the bifurcation diagram with described bifurcations along
the branches of PSs. The influence of nonlinearity is visible for larger energy values:
log E > 0. From practical point of view that this is a good feature. Internal
resonances occur for log E > 2 which mean that for slightly damped mechanical
oscillators of this type the locking solutions are far from usually working range.

This approximation contrary to integration of the system’s equations can give
a overview of dynamics in conservative oscillators. In case of more than two DoF
one can obtain the fast information about dynamics contrary to classical Poincare
section for fixed energy levels (there are just ineffective).
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