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This article presents a system of three unidirectionally coupled Duffing oscillators. On
the basic of numerical study we show the mechanism of translation from steady state to
chaotic and hyperchaotic behavior. Additionally, the impact of parameter changes on
the behavior of the system will be presented. Confirmation of our results are bifurcation
diagrams, timelines, phase portraits, Poincare maps and largest Lyapunov exponent
diagrams.
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1. Introduction

Recently, we observed a growing interest in the theory of nonlinear dynamic systems.
Rapid development of this branch of science has caused penetration of nonlinear
dynamics to other areas research, such as biology, economics, chemistry, mechanics
Quantum. Analysis of the dynamics of coupled nonlinear oscillators is one area that
has not yet been thoroughly investigated. Therefore, this article aims presentations
to the conservation of these oscillators – analysis emerging types of attractors in
phase space following a change in coupling coefficient.

2. Model

The subject of our research is a system of three unidirectionally coupled Duffing
oscillators [1] shown in Fig. 1. Each of the three oscillators is described by the
following equation:

z̈ + C1ż + C2z + C3z
3 = 0 (1)

where C1, C2, C3 are constant values. These constant values are constant in all
numerical studies: C1 = 0, 1, C2 = −0, 1, C3 = 1.
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Figure 1 System of three unidirectionally coupled Duffing oscillators

By introducing new coordinates x = z, y = ż to equation (1) a system of three
oscillators shown in Fig. 1 can be described by the equations [2]:

ẋ1 = y1

ẏ1 = −C1y1 − C2x1 − C3x
3
1 + C4(x3 − x1)

ẋ2 = y2 (2)
ẏ2 = −C1y2 − C2x2 − C3x

3
2 + C4(x1 − x2)

ẋ3 = y3

ẏ3 = −C1y3 − C2x3 − C3x
3
3 + C4(x2 − x3)

where C4 is the coupling coefficient, whose value change from 0 to 1.
All numerical studies were carried out for the same initial conditions:

x1 = 1, y1 = 3
x2 = 5, y2 = 2
x1 = 3, y3 = 4

3. Numerical analysis of three identical, unidirectionally coupled Duff-
ing oscillators

At this point we present the mechanism that leads to a translation from steady state
to a non–periodical oscillations of three identical, unidirectionally coupled Duffing
oscillators. Using equations (2), we analyze the behavior of changing the coupling
coefficient C4.

Bifurcation diagram (Fig. 2) and largest Lyapunov exponent diagrams (Fig. 3)
are as follows [3], [4].

For the coupling coefficient C4 ≤ 0, 0057 we see the pursuit of stationary point
(Fig. 4a), while the value of C4 = 0, 0057 we can observe the phenomenon of
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transitional chaos (Fig. 4b). All the values of Lyapunov exponents are negative
(λ <0). With the increase of the coupling coefficient C4 from 0,0058 to 0,2 as a
result of subcritical Hopf bifurcation, we observe chaotic behavior (Fig. 5a, 6a, 7a).
The largest Lyapunov exponent is positive (λmax > 0). Further increase of the
parameter causes the transition to hyperchaotic motion (Fig. 5b, 6b, 7b), which is
characterized by the Lyapunov exponents that have two positive values.

a) b)

Figure 2 a) Bifurcation diagram for C4 = 0÷ 1, b) Bifurcation diagram for C4 = 0÷ 0, 1

a) b)

Figure 3 a) The largest Lyapunov exponent for C4 = 0 ÷ 1, b) The largest Lyapunov exponent
for C4 = 0÷ 0, 1
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a) b)

Figure 4 a) Timelines for C4 = 0, 0056, b) Timelines for C4 = 0, 0057

a) b)

Figure 5 a) Timelines for C4 = 0, 1, b) Timelines for C4 = 0, 5

a) b)

Figure 6 a) Phase portrait for C4 = 0, 1, b) Phase portrait for C4 = 0, 5
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a) b)

Figure 7 a) Pioncare map for C4 = 0, 1, b) Pioncare map for C4 = 0, 5

4. Numerical analysis of three non–identical, unidirectionally coupled
Duffing oscillators

In the case of non–identical, unidirectionally coupled Duffing oscillators equations
take the form:

ẋ1 = y1

ẏ1 = −C1y1 − C2x1 − C3x
3
1 + C4(x3 − x1)

ẋ2 = y2 (3)
ẏ2 = −(C1 + C5)y2 − C2x2 − C3x

3
2 + C4(x1 − x2)

ẋ3 = y3

ẏ3 = −(C1 + C6)y3 − C2x3 − C3x
3
3 + C4(x2 − x3)

where C5 and C6 are additional constants, introducing variations in the system.
Are, respectively: C5 = 0, 001, C6 = 0, 002.

Bifurcation diagram and largest Lyapunov exponent diagrams are shown in Figs
8 and 9.

For the coupling coefficient C4 < 0, 0057 (Fig. 10), we can see the pursuit of
the stationary point, all Lyapunov exponents are negative (λ < 0). When the cou-
pling coefficient C4 ≥ 0, 0057 is subcritical Hopf bifurcation, we observe the chaotic
behavior of the system investigated (Figs 11a, 12a,13a). The largest Lyapunov ex-
ponent has a positive value (λmax > 0). Increasing C4 above 0,2 is moving towards
the system in hyperchaos (Fig. 11b, 12b, 13b) – two Lyapunov exponents are larger
than zero.
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a) b)

Figure 8 a) Bifurcation diagram for C4 = 0÷ 1, b) Bifurcation diagram for C4 = 0÷ 0, 1

a) b)

Figure 9 a) The largest Lyapunov exponent for C4 = 0 ÷ 1, b) The largest Lyapunov exponent
for C4 = 0÷ 0, 1

Figure 10 Timelines for C4 = 0, 0056
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a) b)

Figure 11 a) Timelines for C4 = 0, 1, b) Timelines for C4 = 0, 5

a) b)

Figure 12 a) Phase portrait for C4 = 0, 1, b) Phase portrait for C4 = 0, 5

a) b)

Figure 13 a) Pioncare map for C4 = 0, 1, b) Pioncare map for C4 = 0, 5
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Figure 14 Subcritical Hopf bifurcation

5. Conclusions

Research show that the introduction of a small parameter mismatch to coupled
oscillators has little influence of the results. Decisive influence on the obtained
values is coupling coefficient C4.

This is critical from the standpoint of experimental studies, where you have to
take into account some differences in values of conjugated system – nominal terms,
they should be identical.

For small values of coupling coefficient, the system tends to the critical point.
By increasing the coupling coefficient we observe chaotic motion, the value of 0,2
(two positive Lyapunov exponents) starts hyperchaos.

The analysis show that the transition from steady state in the chaotic motion is
a result of subcritical Hopf bifurcation (Fig. 14). – a stable fixed point and unstable
orbits at the bifurcation changed from an unstable stationary point.
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