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This paper presents the examples of practical applications of composite materials in
mechanical engineering and methods in determining of micromechanical properties of a
laminate, corresponding to a plate, made of epoxy matrix strengthened with longitudinal
boron fibres, including:

1. Strength of Materials equations

2. Halphin–Tsai equations

3. Theory of elasticity

Basing on determined micromechanical properties, numerical analysis of stability (of
rectangular, composite plate, simply supported on all edges, axially compressed) using
Finite Element Method (Ansys program) is carried through. First four buckling modes
are presented and compared to the corresponding ones for isotropic model (steel).
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1. Application of composite materials

Nowadays, in the times of rapid development in modern computer technologies
and production optimization, it is desirable to use strength properties of available
construction materials optimmally. The main reason for this operation, in the area
of massive production systems is the maximization of the savings resulting from
reduction of the material amount (mass reduction of the detail) in manufactured
batch, assuring both safety and reliability level respectively. Remarkable domains,
in which this phenomena is observed are the air and motor industries.
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Figure 1 An aeroplane as an example of a composite structure [1]

The choice of the material used in the production depends on many factors. The
most important of them are those defining the value and the type of the loading
and working conditions. Today, the most popular construction materials are the
cast iron, steel, aluminium and their alloys. The main advantages of using them
are high mechanical properties, relatively low cost and general accessibility. In the
drawbacks, high density1 and low corrosion resistance should be mentioned.

Mass reduction of the element plays superior role in the design stage of the
vehicles in different means of transport. For instance, it is difficult to imagine the
airplane completely made of steel parts, which weight would not let even taking
off. It is estimated, that reduction of mass of approximately 0,5 kg bears the fuel
savings of 1400 litres per year [2].

For this reason, the engineers– designers are searching for new (ultralight) mate-
rials, possesing required strength properties. These materials are called the compos-
ites, and are commonly used in construction elements in the plane (Fig. 1), space
vehicles, as parts in combustion engines (connecting rods, pistons, cylinder sleeves),
in sport equipment (tennis rackets, golf clubs), in medicine (dentist implantation,
vein stenters) and angling (fishing rods, boats).

Except for required mechanical properties, composites are corrosion resistant.
For instance, in the fifties of XX–st century, in VFB Sachsenring Automobilwerke
factory, an innovatory automobile vehicle model was designed and produced in the
40 years long period. Worth mentioning is the fact, that a new, polymer (made of
hardening plastics) body was used in this model.

This solution was to increase both corrosion resistance and safety level (higher
impact stength and non-flammable body) by simultaneous reduction of the total
vehicle mass (only 19kW drive motors were used). Trabant (Fig. 2), popularly
called as ”Trabi” or ”Trabbi” turned out to be a very reliable and cheap project.
Finally, almost 3 million copies were manufactured and for this reason it is referred
to be a ”cult” project2.

1steel type S235JRG2 according to DIN EN 1.0025 (7,86 g/cm3)
2in 2009, after 10 years long stoppage in production, a new, electric driven Trabant NT model was
presented Trabant nT
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Figure 2 Trabant- an innovative composite body [3]

2. Strength properties of boron fibres and epoxy matrix

Composite, as homogeneous structural material is composed of at least two com-
ponents, closely connected with each other on the macroscope level and are not
insoluble in each other3.

Composite materials occur in natural environment. The wooden trunk structure
is the most remarkable composite example (it is composed of particular structures:
bark, cambium, alburnum, duramen, pith). Generally, the composites can be clas-
sified in three cathegories:

1. composite strenghtened with heterogeneous particles, e.g. concrete (cement
+ sand)

2. flake composite, e.g. wooden plywood

3. composite strengtened with the fibres, e.g. glass-epoxy laminate

A singular lamina of considered composite is composed of longitudinally packed
boron fibres (with tungsten core) in the matrix made of epoxy. The strength
properties for epoxy (isotropic material) is presented in Tab. 1 and boron fibres
in Tab. 2.

Table 1 Strength properties of boron fibres [5]

Young’s modulus 3.4 GPa
Poisson’s ratio 0.3
shear modulus 1.3 GPa
tensile strength 72 MPa
compressive strength 102 MPa
shear strength 34 MPa
specific density 1200 kg/m3

3it is equivalent to assumption, that strenghtening phases (fibres) and bonding phases (matrix)
can be specified
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Table 2 Strength properties of epoxy matrix [4]

axial modulus 380 GPa
axial Poisson’s ratio 0.13
specific density 2600 kg/m3

According to characteristic strength properties and structure, boron fibres have
been studied in detailed tests and model analysis by NASA and Boeing Corporation
[6], [7]. The access to literature is limited (due to encryption of reports) and mainly
comes from the seventies of the previous century.

A single boron fibre is composed of the 10µm wide tungsten core and boron
coating, which is applied by the diffusion method4. The total diameter of the fiber
is about 140µm. The boron–fibre’s cross–section and external surface are presented
in Fig. 3 and Fig. 4.

Figure 3 Boron fibre cross–section [5]

Figure 4 The external surface of the fiber [5]

4this means, that the structure of the fiber is not homogeneous (but composite)
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Boron–epoxy composites have been widely used in the air industry (as the plated
elements in the airplane F–111, which is presented in Fig. 5) and space vehicles.
In [6] an analysis of the boron–epoxy composites used as a repair kit for damaged
parts of construction was carried through.

Figure 5 RAAF F111 [8]

The production process of the composites is very costful, and for this reason this
material is not so popular as glass–epoxy laminates. The technological develepo-
ment, which leads to the discovery of superstrong materials, again has directed the
scientists’ interest to boron fibres in aluminium matrix. In this way a new composite
has been explored in detail (the tensile strength 2000MPa [8]).

The content analysis of the tested boron–epoxy composite is detailed in Tab. 3.

Table 3 The content analysis in the boron-epoxy composite [4], [5]

The fibrous volume fraction factor: 80
Fiber’s diameter d: 0,142 mm
Distance between the fibers: 0,151 mm
Density of the fibers: 2600 kg/m3

Density of the matrix: 1200 kg/m3

Density of the composite: 2320 kg/m3

Volume of 1kg composite: 4,31x10-4 m3

Fibrous volume in 1 kg of the composite: 3,45x10-4 m3

Matrice’s volume in 1 kg of the composite: 0,86x10-4 m3

Mass of the fibers in 1 kg of the composite: 0,897 kg
Mass of the matrix in 1 kg of the composite: 0,103 kg
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3. Determination of the strength properties

3.1. Strength of materials equations

The following equations in this section refer to [10].

• Volume fractions

V1 = 0.8 - fibrous volume fraction

V2 = 0.2 - matrix volume fraction

• Longitudinal Young’s Modulus E11 Regarding the values from Tab. 1
and Tab. 2: E1 = 380 [GPa] – Axial modulus of the fibers

E2 = 3.4 [GPa] – Axial modulus of the matrix

Using the rule of mixture:

E11 = V1E1 + V2E2 (1)

we get longitudinal (axial) Young’s modulus of the composite:
E11 = 304.7 [GPa]

• Transverse Young’s Modulus E22

1
E22

=
V1

E1
+

V2

E2
(2)

E22 = 16.1 [GPa]

• Major Poisson’s ratio ν12

ν1 = 0.13 - axial Poisson’s ratio of the fibers

ν2 = 0.3 - axial Poisson’s ratio of the matrix

Including equation from [4]:

ν12 = V1ν1 + V2ν2 (3)

ν12 = 0.164

• Minor Poisson’s ratio ν21

ν21E11 = ν12E22, ν21 = 8.8310−4 (4)

• In–plane Shear Modulus G12

G1 - shear modulus of the fibers

G1 =
E1

2(1 + ν1)
, G1 = 168.1[GPa] (5)

G2 - shear modulus of the matrix
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G2 =
E2

2(1 + ν2)
, G2 = 1.3[GPa] (6)

Using equations (5) and (6):

1
G12

=
V1

G1
+

V2

G2
(7)

we finally get:

G12 = 6.3 [GPa]

3.2. Halphin–Tsai equations

For higher values (> 70% of fibrous volume fraction factor), the properties deter-
mined in Strength of Materials equations differ much from the experimental data.
In order to describe them more precisely, Halphin–Tsai criterion should be used.
More detailed description can be found in [11].

• Longitudinal Young’s Modulus E11

Referring to (1) we get:

E11 = 304.7[GPa]

• Transverse Young’s Modulus E22 [4]

ξ = 2 – increment factor [4] (for hexagonal layout and circular fibrous cross–
section presented in Fig. 6 and Fig. 7)

Figure 6 Layout–diagram of the fibers in the composite
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Figure 7 Hexagonal layout in the composite

η =
E1
E2
− 1

ξ + E1
E2

(8)

hence η = 0.974

E22 = E2
1 + (ξηV1)
1− ηV1

(9)

finally we get: E22 = 39.3 [GPa]

• Major Poisson’s ratio ν12

Referring to (3) we get:

ν12 = 0.164

• Minor Poisson’s ratio ν21

Using (4) we get:

ν21 = 0.021

• In–plane Shear Modulus G12[11]

λ = 1 – increment factor (for hexagonal layout and circular fibrous cross–
section) Using the relations (5) and (6):

ζ =
G1/G2 + 1
G1/G2 − λ

(10)

ζ = 0.985

G12 = G2
1 + (ζλV1)

1− ζV1
(11)

G12 = 11.0[GPa]
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For higher values of fibrous volume fraction factors (> 50%), it is strongly
recommended to use Hewitt’s and Mahelbre’s equations in order to determine
the increment factor [4]:

λ = 1 + 40V 10
f (12)

Using the equations (10) and (11) we finally get:

G12 = 27.7 [GPa]

3.3. Theory of Elasticity Equations

The following equations in this subsection are described in [4].

• Longitudinal Young’s Modulus E11

E11 = κ1 − κ2

κ3 + κ4
(13)

κ1 = E1V1 + E2V2 (14)
κ2 = 2E1E2V1V2(ν1 − ν2)2 (15)
κ3 = E1(2V1ν

2
2 − ν2 + V1ν2 − V1 − 1) (16)

κ4 = E2(−1− 2V1ν
2
1 + ν1 − V1ν1 + 2ν2

1 + V1) (17)

finally:E11 = 304.7 [GPa]

• Major Poisson’s ratio ν12

The value of the Major Poisson’s ratio ν12

ν12 = ν1V1 + ν2V2 +
η1

η2 + η3
(18)

η1 = V1V2(ν1 − ν2)[2E1(ν2)2 + ν2E1 − E1

(19)
+E2 − E2ν1 − 2E2(ν1)2]
η2 = E1[2V1(ν2)2 − ν2 + ν2V1 − 1− V1] (20)
η3 = E2[2(ν1)2 − ν1V1 − 2(ν1)2V1 + V1 − 1 + ν1] (21)
ν12 = 0.156

• Transverse Young’s Modulus E22

In order to determine E22, the values of G23 and ν23 must be evaluated first.
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E22 = 2(1 + ν23)G23 (22)

K1 =
E1

2(1 + ν1)(1− 2ν1)
(23)

K2 =
E2

2(1 + ν2)(1− 2ν2)
(24)

K =
K2(K1 + G2)V2 + K1(K2 + G2)V1

(K1 + G2)V2 + (K2 + G2)V1
(25)

K = 5.368 [GPa]

Introducing parameters as below:

A = A1 + A2A3 (26)

A1 = 3V1(1− V1)2
(

G1

G2
− 1

)(
G1

G2
+ µ1

)
(27)

A2 =
G1

G2
µ2 + µ1µ2 − (

µ2G1

G2
− µ1)V 3

1 (28)

A3 = V1µ2(
G1

G2
− 1)−

(
µ2G1

G2
+ 1

)
(29)

B = B1 + B2B3 + B4 (30)

B1 = −3V1(1− V1)2
(

G1

G2
− 1

) (
G1

G2
+ µ1

)
(31)

B2 = 0.5
[
µ2

G1

G2
+

(
G1

G2
− 1

)
V1 + 1

]
(32)

B3 = (µ2 − 1)
(

G1

G2
+ µ1

)
− 2

(
µ2

G1

G2
− µ1

)
V 3

1 (33)

B4 = 0.5
[
V1(µ2 + 1)

(
G1

G2
− 1

) (
G1

G2
+ µ1 +

µ2G1

G2
− µ1

)
V 3

1

]
(34)

C = C1 + C2 + C3 (35)

C1 = 3V1(1− V1)2
(

G1

G2
− 1

)(
G1

G2
+ µ1

)
(36)

C2 = µ2
G1

G2
+

(
G1

G2
− 1

)
V1 + 1 (37)

C3 =
G1

G2
+ µ1 +

(
µ2G1

G2
− µ1

)
V 3

1 (38)

and solving the equation(only the positive value is correct):

f(x) = Ax2 + 2Bx + C = 0 (39)

where:
x =

G23

G2
(40)
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we get: G23 = 7.75 [GPa]

m = 1 + 4K
ν2
12

E11
m = 1.002 (41)

ν23 =
K −mG23

K + mG23
ν23 = −0.182 (42)

finally: E22 = 12.7 [GPa]

• Minor Poisson’s Ratio ν21

Using the (4) we get:

ν21 = 6.48310−3

• In–plane Shear Modulus G12

G12 = G2
G1(1 + V1) + G2(1− V1)
G1(1− V1) + G2(1 + V1)

(43)

G12 = 11.0[GPa]

The determined strength parameters can be compared in the below table5:

Table 4 Summarizing statement of determined strength properties of considered material

Strength of materials Halphin-Tsai Theory of Elasticity
Equations Equations Equations

E11: GPa 304.7 304.7 304.7
E22: GPa 16.1 39.3 12.7
ν12: - 0.164 0.164 0.156
ν21: - 0.008 0.021 0.065
G12: GPa 6.3 27.7 11.0

4. Analytical determination of buckling load

4.1. Isotropic Material

The buckling force for isotropic plate (width a = 500 mm, length b = 500 mm,
thickness h = 5 mm, number of halfwaves in the compression direction m = 1) is
described in literature [12] as:

Ncr =
π2D

a
(m +

1
m

a2

b2
)2 (44)

D =
Eh3

12(1− ν2)
(45)

and the buckling stress is equal to: σcr = 75.9 [MPa]
5Halphin–Tsai in–plane Shear Modulus according to Hewitt’s and Mahelbre’s Equations
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4.2. Orthotropic Material

The buckling load for the compressed orthotropic plate is described by equation
below [10]:

σcr =
π2Dred

b2
(46)

where:

Dw =
G12h

3

12
(47)

(48)

D1 =
E11h

3

12(1− ν12ν21)
(49)

D2 =
E22h

3

12(1− ν12ν21)
(50)

Dred = D1 + D2 + D1ν2 + D2ν1 + 4Dw (51)

Table 5 Summarizing statement of analytical buckling stress values

unit Strength of materials Halphin-Tsai Theory of Elasticity
equations equations equations

σcr: MPa 28.9 38.6 31.8

Figure 8 Loading and initial conditions
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5. Numerical analysis of tested composite plate

Knowing the strength parameters of boron–epoxy composite, numerical analysis of
the buckling process was carried through. The program used to computer simulation
was ANSYS (R) Release 11.0SP1.

The object of the numerical analysis is a rectangular, simply supported on all
edges plate (width: 500 mm, length: 500 mm, thickness: 5 mm). The composite is
made of 25 parallel to compression load, unidirectional layers (0.2 mm thick each
of them).

The material of the plate was boron–epoxy laminate which is treated as an
orthotropic material (the properties were determined in sec 3). Refering to Ansys
documentation it is recommended to use shell type of the elements (it is possible to
modify the ply angles). In this analysis SHELL 99 type of the element was used.

Refering to [13] SHELL99 may be used for layered applications of a structural
shell model. The element has six degrees of freedom at each node: translations in
the nodal x, y, and z directions and rotations about the nodal x, y, and z–axes.
The element is defined by eight nodes, average or corner layer thicknesses, layer
material direction angles, and orthotropic material properties.

After creating the geometry, the model was meshed using mapped method. The
plate is simply supported on all edges and is axially compressed (along x–axis) with
elementary pressure value (Fig. 8). The critical load is determined by eigen–value
modal analysis.

5.1. Material properties

The material properties used in numerical calculations are determined by:

1. Strength of Materials equations

2. Halphin–Tsai equations

3. Theory of elasticity

and are listed in Tab. 4. For isotropic material, the values of Young’s modulus and
Poisson’s ratio correspond to steel and are equal to: E = 210 [GPa], ν = 0.3.

5.2. First buckling mode

The first buckling mode form of the composite plate (Fig. 9)is symmetric (m=1
halfwaves parallel to compression direction, n=1 halfwaves perpendicular to com-
pression direction) and identical for each determining method. The buckling stress
results are listed in the below Tab. 6. The solution described in sec 4, given by
analytical approach is very close to the numerical results (maximum difference 6.3
for Elasticity Equations).
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Table 6 Summarizing statement of buckling stress values in the 1st buckling mode

Orthotropic material:
Strength of materials Halphin-Tsai Elasticity Isotropic

equations equations equations material
Analytical

σcr: 28.9 MPa 38.6 MPa 31.8 MPa 75.9 MPa
Numerical

σcr: 28.6 MPa 38.2 MPa 29.8 MPa 75.9 MPa

Figure 9 The 1st buckling mode

5.3. Second buckling mode

In the second buckling mode, a sinusoidal (with two amplitudes) form is observed
(Fig. 10). For Strength of Materials and Elasticity equations, it is antisymmetric
(m=1 halfwaves parallel to compression direction, n = 2 halfwaves perpendicular
to compression direction), whereas for Halphin–Tsai the form is symmetric (m = 2,
n = 1).

The direction of the waves differs accordingly to the G12 value. The buckling
value for the Halphin–Tsai Equations is almost the same as for isotropic material.
The buckling stress results are listed in the below Tab. 7.
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Table 7 Summarizing statement of buckling stress values in the 2nd buckling mode

Orthotropic material:
Strength of materials Halphin-Tsai Elasticity Isotropic

equations equations equations material
Numerical

σcr: 55.7 MPa 110.6 MPa 57.0 MPa 118.5 MPa

Figure 10 Strength of Materials and Elasticity Equations- 2nd buckling mode

Figure 11 Halphin–Tsai Equations and Isotropic material- 2nd buckling mode
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5.4. Third buckling mode

In the third buckling mode, a sinusoidal form is rotated (in composite structure
respectively) (Figs 12 and 13). For Strength of Materials and Elasticity equations
it is symmetric (m = 2, n = 1), whereas for Halphin–Tsai the form is antisymmetric
(m = 1, n = 2).

Only for isotropic material three amplitudes are observed (Fig. 14). The govern-
ing equations for orthotropic critical stress are not valid and should be investigated
more carefully. The buckling stress results are listed in the below Tab. 8.

Table 8 Summarizing statement of buckling stress values in the 3rd buckling mode

Orthotropic material:
Strength of materials Halphin-Tsai Elasticity Isotropic

equations equations equations material
Numerical σcr: 101.0 MPa 116.6 MPa 103.1 MPa 210.6 MPa

Figure 12 Strength of Materials and Elasticity Equations- 3rd buckling mode
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Figure 13 Halphin-Tsai Equations- 3rd buckling mode

Figure 14 Isotropic Matetial- 3rd critical buckling mode
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5.5. Fourth buckling mode

In the fourth buckling mode, a sinusoidal form is observed (four amplitudes) which
is similar for each determining method (Fig. 15). The buckling stress results are
listed in the below Tab. 9.

Table 9 Summarizing statement of buckling stress values in the 4th buckling mode

Orthotropic material:
Strength of materials Halphin-Tsai Elasticity Isotropic

equations equations equations material
Numerical σcr: 113.2 MPa 152.4 MPa 118.4 MPa 303.0 MPa

Figure 15 Strength of Materials Theory- 4th critical buckling mode

5.6. Results summary. Mass analysis

The mass analysis for square plates (dimensions: length a = 500 mm, width b = 500
mm) was carried through. The aim of this was to compare the thicknesses of
the boron–epoxy plates hco (properties listed in Tab. 4), alluminium plate hal

(νal = 0.32, Eal = 0.74105 MPa), which buckling stress corresponds to the critical
stress in the steel plate (thickness hst = 5mm, buckling force Nkr = 189.8 kN).

Using the relations from sec 4:

χ =
E11(1 + ν21)

12(1− ν12ν21)
+

E22(1 + ν12)
12(1− ν12ν21)

+
G12

3
(52)
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hco = 3

√
bNkr

π2χ
(53)

hst = 3

√
3Nkr(1− ν2)a

π2E
(54)

hal = 3

√
3Nkr(1− ν2

al)a
π2Eal

(55)

the mass corresponds the product of volume and density.

Figure 16 Critical stress in particular modes

Table 10 Numerical stress results summary

Determining method unit buckling stress σcr:
1st mode: 2nd mode: 3rd mode: 4th mode:

Orthotropic Material: Boron-epoxy
Strength of Materials MPa 28.6 55.7 101.0 113.2
Halphin-Tsai Equations MPa 38.2 110.6 116.6 152.4
Elasticity Equations MPa 29.8 57.0 103.1 118.4

Isotropic Material: Steel
Eigenvalue buckling MPa 75.9 118.5 210.6 303.0
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Table 11 Plate thickness summary

Orthotropic Material: Boron-epoxy
Strength of Materials hco 6.9 mm mco 4.0 kg
Halphin-Tsai Equations hco 6.3 mm mco 3.6 kg
Elasticity Equations hco 6.7 mm mco 3.9 kg

Isotropic Material: Aluminium
Eigenvalue Buckling hal 7.0 mm mco 4.7 kg

Isotropic Material: Steel
Eigenvalue Buckling hst 5.0 mm mco 9.7 kg

Figure 17 Mass of the plates

The boron–epoxy composite is a very light and resistant material in comparison
to steel and aluminium alloys (Tabs 11 and Fig. 17). Depending on determination
method, the difference between the composite and aluminium is 0.7–1.1 kg and 4.7–
6.1 kg in comparison to steel. For this reason, it is reasonable to use it in low–mass
demanding constructions e.g. aircrafts, vessels, cars. Additionally, the increase of
the critical stress can be achieved by slight size enlargement. This fact is meaningful
for the upgrade of the safety level.

6. Conclusions

The strength properties of the boron–epoxy composite were evaluated using three
different methods. For each theory, different values were reached. Additionally,
the values of the transverse Young’s modulus and in–plane shear modulus play a
superior role in creation of symmetric or antysymmetric buckling form. For this
reason experimental researches should be done. Although the buckling load for
isotropic material is approximately 2 times bigger (than for orthotropic materials),
the boron-epoxy composites can be used in well weighted structures.
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The author would like to continue the researches in the field of boron-epoxy
and boron-aluminium composites with the application in the vehicle railings (dif-
ferent types of support, with stiffening ribbes). The aim of the work is to create
a composite assembly with outstandng strength properties, which could be used
as reliable and safety upgrading elements in the construction of different means of
transport. Experimental tests are predicted to be done in order to create more
accurate equations describing the material properties of this interesting material.
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