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We investigate in this article the optimized orbit transfer of a space vehicle, revolving
initially around the primary, in a similar orbit to that of the Earth around the Sun, in
an elliptic trajectory, to another similar elliptic orbit of an adequate outer planet. We
assume the elements of the initial orbit to be that of the Earth, and the elements of
the final orbit to be that of an outer adequate planet, Mars for instance. We assume
the elements of the two impulse Hohmann generalized configuration (the case of elliptic,
non coplanar orbits) to be a1, e1, a2, e2, aT , eT . From the very beginning, we should
assign θ = α1 + α2, the total plane change required. α1 is the plane change at the first
instantaneous impulse at peri–apse, which will be minimized, and α2 the plane change
at the second instantaneous thrust at apo–apse.
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1. Introduction

The Hohmann transfer is the minimum two impulse transfer between coplanar cir-
cular and elliptic orbits [1]. As for the derivations of the velocity change require-
ments ∆V1, ∆V2 and transfer time, we can draw a graph which illustrates total
energy/satellite mass as a function of orbit period P = 2πa3/2

√
µ that means a plot of

−µ
2a versus

(
2π√

µ

)
a3/2. Plotted results are extensively established [1], [2]. For classi-

cal Hohmann transfer if r2
r1
〈15.58, r2〉r1, is not satisfied, then the Hohmann transfer

is no longer optimal. For these conditions Bi–elliptic transfers are always more
economical in propellant than Hohmann transfer configurations [1]. The Hohmann
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transfer is a relatively simple maneuver, especially the classical model. It may be
simplified or complicated easily, and we may encounter very difficult situations.
This can be easily seen from the literature of orbit transfer [3]. There exist four
feasible Hohmann configurations according to the coincidence of peri–apse and apo-
apse of the three ellipses. We consider the first of them [4]. Radius or major axis
change, in the process of orbit transfer may be coupled by a plane change for the
circular or elliptic orbit transfer. This is an important practical procedure. The
optimal two impulse transfer that satisfy these conditions is the Hohmann transfer,
with split plane change. The first ∆V1 thrust not only produces a transfer ellipse
but also induce a rotation of the orbital plane. At the second impulse, a second tilt
is induced as well as the production of the final elliptic orbit. An engine firing in
the out–of plane direction is required for the change of plane. The point of firing
becomes a point in the new orbit, and the burn point becomes the intersection of
the current orbit and the desired orbit. Definitely, we should perform plane change
in the smartest way, since it is fuel expensive, anyway you do them. Even without
the examination of the specific equations, planning a space mission, reduces to a
problem of geometry, timing, mechanics of orbital motion, and a lot of common
sense.

2. Method and Results

In this article we investigate the generalized Hohmann orbit transfer with split –
plane change. We take into account, the first configuration, where the apo–apse of
the transfer orbit coincides with the apo–apse of the final orbit, and the peri–apse
of the initial and the transfer orbit are coincident [5], Fig. 1. ∆V1 produces at
peri–apse of initial orbit, a transfer ellipse as well as a plane change α1. Similarly
at apo–apse, ∆V2 rotates the orbit plane through an angle α2 = θ−α1 , and designs
the final elliptic orbit as shown in Fig. 2, Fig. 3 and Fig. 4, represent the velocity
vector triangular addition ∆V1 , ∆V2 respectively.

Figure 1 Generalized Hohmann Transfer
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where VPi =

√
µ (1 + e1)
a1 (1− e1)

VPtr =

√
µ (1 + eT )
aT (1− eT )

VAtr =

√
µ (1− eT )
aT (1 + eT )

VAf
=

√
µ (1− e2)
a2 (1 + e2)

The increments of velocities at peri–apse and apo–apse of the elliptic transfer orbit
is given by

∆V 2
1 =

µ (1 + e1)
a1 (1− e1)

+
µ (1 + eT )
aT (1− eT )

−2

√{
µ (1 + e1)
a1 (1− e1)

}{
µ (1 + eT )
aT (1− eT )

}
cosα1 (1)

∆V 2
2 =

µ (1− e2)
a2 (1 + e2)

+
µ (1− eT )
aT (1 + eT )

−2

√{
µ (1− e2)
a2 (1 + e2)

}{
µ (1− eT )
aT (1 + eT )

}
cos (θ − α1) (2)

∆VT =
√

∆V 2
1 +

√
∆V 2

2 = ∆V1 + ∆V2 (3)
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where θ is arbitrary and given by θ = α1 + α2 and eT , aT are calculated from the
formulae

eT =
[a2 (1 + e2)− a1 (1− e1)]
[a2 (1 + e2) + a1 (1− e1)]

=
b4 − b1

b4 + b1
(4)

aT =
[a2 (1 + e2) + a1 (1− e1)]

2
=

b4 + b1

2
(5)

where
b1 = a1 (1− e1)
b4 = a2 (1 + e2)
α1 to be optimized by the condition of minimization ∂∆VT

∂α1
= 0.

When checking the second order conditions, we treat the functional V [y] as a
function of ε i.e. V (ε).

We set dV
dε = 0 and consequently, we acquire the first order necessary condi-

tion for an extremal. For distinction between maximization and minimization we
calculate the second derivative d2V

dt2 . We find the following second order necessary
conditions:

d2V
dt2 ≤ 0 – for maximize of V ,
d2V
dt2 ≥ 0 – for minimize of V .
As for second order sufficient conditions:
d2V
dt2 < 0 – for maximize of V ,
d2V
dt2 > 0 – for minimize of V ,
cf. [5] for definitions.
For the first configuration
Let

A1 =
µ

a1

(
1 + e1

1− e1

)
B1 =

µ

aT

(
1 + eT

1− eT

)

(6)

C1 =
µ

a2

(
1− e2

1 + e2

)
D1 =

µ

aT

(
1− eT

1 + eT

)

whence

∆VT =
(
A1 + B1 − 2

√
A1B1 cosα1

)1/2

(7)

+
(
C1 + D1 − 2

√
C1D1 cos (θ − α1)

)1/2

By partial differentiation with respect to α1 and equating to zero, and after rear-
rangements and clearing fractions, we find that

A1B1 sin2 α1

A1 + B1 − 2
√

A1B1 cosα1

=
C1D1 sin2 (θ − α1)

C1 + D1 − 2
√

C1D1 cos (θ − α1)
(8)
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From which we can deduce

A1B1

[
C1 + D1 − 2

√
C1D1

(
bx + a

√
1− x2

)] (
1− x2

)

(9)

= C1D1

[
A1 + B1 − 2

√
A1B1x

] [(
a2 − b2

)
x2 + b2 − 2abx

√
1− x2

]

where:
x = cos α1

√
1− x2 = sin α1 a = sin θ b = cos θ (10)

After some reductions, we find

A1B1 (C1 + D1)− C1D1 (A1 + B1) b2

+
(
2C1D1

√
A1B1b

2 − 2bA1B1

√
C1D1

)
x

−{
A1B1 (C1 + D1) + C1D1 (A1 + B1)

(
a2 − b2

)}
x2

+
{
2bA1B1

√
C1D1 + 2C1D1

√
A1B1

(
a2 − b2

)}
x3

=
√

1− x2
{

2aA1B1

√
C1D1 − 2abC1D1 (A1 + B1)x

+
(
4abC1D1

√
A1B1 − 2aA1B1

√
C1D1

)
x2

}

Let

A1B1 (C1 + D1)− C1D1 (A1 + B1) b2 = E1

2C1D1

√
A1B1b

2 − 2bA1B1

√
C1D1 = E2

−{A1B1 (C1 + D1) + C1D1 (A1 + B1)
(
a2 − b2

)} = E3

2bA1B1

√
C1D1 + 2C1D1

√
A1B1

(
a2 − b2

)
= E4

2aA1B1

√
C1D1 = E5

−2abC1D1 (A1 + B1) = E6

4abC1D1

√
A1B1 − 2aA1B1

√
C1D1 = E7

i.e.
E1 + E2x + E3x

2 + E4x
3 =

√
1− x2

(
E5 + E6x + E7x

2
)

(11)

After squaring and some reductions, we may write

(
E2

1 − E2
5

)
+ (2E1E2 − 2E5E6)x

+
(
2E1E3 + E2

2 − 2E5E7 − E2
6 + E2

5

)
x2

+(2E1E4 + 2E2E3 − 2E6E7 + 2E5E6)x3 (12)
+

(
2E2E4 + E2

3 − E2
7 + 2E5E7 + E2

6

)
x4

+(2E3E4 + 2E6E7) x5 +
(
E2

4 + E2
7

)
x6 = 0
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Set

E2
1 − E2

5 = Ψ1 2E1E2 − 2E5E6 = Ψ2

2E1E3 + E2
2 − 2E5E7 − E2

6 + E2
5 = Ψ3

2E1E4 + 2E2E3 − 2E6E7 + 2E5E6 = Ψ4

2E2E4 + E2
3 + 2E5E7 + E2

6 − E2
7 = Ψ5

2E3E4 + 2E6E7 = Ψ6; E2
4 + E2

7 = Ψ7

That means after some reductions, we get an equation of degree 6 in
x = cos α1 :

ψ1 + ψ2x + ψ3x
2 + ψ4x

3 + ψ5x
4 + ψ6x

5 + ψ7x
6 = 0 (13)

where the E‘s appearing in the ψ‘s are functions of one parameter α1 and could
be expressed in terms of a1, a2, e1, e2 [6], which are constants since they are the
known elements of the terminal orbits.

3. Discussion

The Hohmann transfer is an optimal two impulse transfer. We suppose that the
first increment at peri–apse ∆V1, not only produces a transfer elliptic orbit, but
also rotates the orbital plane by an optimal angle α1.

At apo–apse the second increment of velocity ∆V2 will produce the trajectory
of the final elliptic orbit and rotates the orbit plane by an angle α2 = Θ− α1. We
have ∆VT = ∆V1 + ∆V2. For the minimization of ∆VT we have the condition
∂∆VT / ∂α1 = 0. By expansions, rearrangements and clearing fractions, we ac-
quire through a purely analytical method, except for the resolution of the alge-
braic sixth degree equation, the value of the optimized α1 i.e. (α1)opt, whence
(α2)opt = Θ− (α1)opt. By substitution of (α1)opt, we can easily evaluate (∆V1)opt

and (∆V2)opt from Eqs 1, 2, and (∆VT )Min = (∆V1)opt + (∆V2)opt [6]. The sixth
degree algebraic equation O(x6) Eq.13 could be easily solved by a mathematica
software program.

In this article we laid the foundation of the theory. The approach is purely ana-
lytical except the solution of Eq. 13 which is numerical. No numerical illustrations
are included, for the time being, for instance for the obtenition of numerical results
for the elliptic Hohmann Earth – outer planets, configurations. This will be done
in the second part of the paper. We restrict ourselves here to the consideration of
the first configuration.
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Appendix
David Eagle [7], exposed an excellent clear topic about the optimization of the

classical Hohmann transfer, for coplanar and non–coplanar circular orbits invented
in the year 1925 by the German engineer Walter Hohmann. Eagle cited the following
remarks concerning this transfer:

1. Two impulses 1800 apart are required in the direction of motion, collinear
with velocity vector at peri–apse and apo–apse of transfer orbit.

2. Velocity and not position of vehicle is changed instantaneously.

3. Both thrusts are posigrade, i.e. in direction of orbital motion.

4. The transfer time from first to second impulse is given by

τ = π
√

a3

µ a = 1
2 (ri + rf )

Script i, f refer to initial circular orbit and final circular orbit respectively;

a denotes semi major axis of transfer ellipse.

He derived the following formulae for the purpose of his article:

∆V1 = Vlc

√
1 + R2

1 − 2R1 cos θ1

∆V2 = Vlc

√
R2

2 + R2
1R

2
3 − 2R2

2R3 cos θ2

∆Vt = ∆V1 + ∆V2

θt = θ1 + θ2

R1 =
√

2
rf

ri + rf
R2 =

√
2

ri

rf
R3 =

√
2

ri

ri + rf

Vlc = local circular velocity =
√

µ

ri

θ1 = plane change associated with first impulse
θ2 = plane change associated with second impulse
θt = total plane change angle between initial and final orbit

The necessary condition for optimization is:

∂∆Vt

∂θ1
=

R1 sin θ1√
1 + R2

1 − 2R1 cos θ1

+
R2

2R3 sin θ2√
R2

2 + R2
1R

2
3 − 2R2

2R3 cos θ2

= 0
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Nomenclature:
∆V1 increment of velocity at peri–apse impulse.
∆V2 increment of velocity at apo–apse impulse.
∆VT = ∆V1 + ∆V2

µ constant of gravitation.
a1 semi–major axis of initial orbit.
a2 semi–major axis of final orbit.
aT semi–major axis of transfer orbit.
e1 eccentricity of initial orbit.
e2 eccentricity of final orbit.
eT eccentricity of transfer orbit.
r1 initial radius (classical Hohmann).
r2 final radius (classical Hohmann).
α1 plane change at peri–apse.
α2 plane change at apo–apse.
Θ = α1 + α2 total plane change.




