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The problem of optimal design of rotationally symmetrical shells of uniform stability
stiffened by ribs was discussed in the current paper. The structure was modelled in
ANSYS software and solved by FEM method. The formulation of uniform local stability
was successfully verified by the linear buckling solution. The optimization tasks were
solved numerically using the modified Particle Swarm Optimization algorithm. The crit-
ical loading multiplier was increased by determining the optimal shape of the meridian,
distribution of a wall thickness in a coat of shell and the placement of ribs inside the
shell.
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1. Introduction

The optimization of shells against instability is rather complex task. The papers
devoted to this problem have received considerable attention for several decades.
The problem of shell with a double non-negative curvature is taken into account in
this work. Moreover, the concept of a shell of uniform stability was applied. The
shell of uniform stability is one in which ”the condition of local stability is satisfied
in the form of equality not only at the dangerous point but at any point of the shell”
– quoted from [1]. Due to the proposed linear theory of stability, neither nonlinear
behaviors, nor geometrical imperfections of the structure, were taken into account.
In the optimization problem of such a shell the value of loading multiplier is the
objective function, whereas constraints are the volume of material and the capacity
of a shell. So formulated optimization task of shells – however not stiffened – were
solved by e.g. [2, 3, 4].
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The Particle Swarm Optimization (PSO) is one of the most popular stochas-
tic search method. This evolutionary computation technique was introduced by
[5]. Since that time the increasing interest in this method can be observed. The
modified PSO algorithm (MPSO) was successively applied by [6] for solving en-
gineering tasks e.g. optimal design of columns against instability constraints and
simple structures against postcritical behavior. The MPSO is adapted to cope with
constrained nonlinear optimization tasks for discrete and continuous design vari-
ables. The examples of design of structural elements can be found in the paper by
[7].

As a tool to solve analysis task the ANSYS software was used. The model cre-
ated in script language gives a possibility to easy extend the task for stiffened or
composite shells. Such problems are very difficult to solve by analytical methods.
The MPSO algorithm was coded in C++ language and built to separate executable
file. This application calls an analysis file coded in Ansys Parametric Design Lan-
guage (APDL) on the subsequent steps of iteration.

2. Shell of uniform stability

The considered rotationally symmetrical shell with doubly non–negative curvatures
and cylindrical reference shell in background are presented in Fig. 1. The geometry
of a reference shell is described by the following symbols: R0 stands for the radius
of a shell, L0 means the half of its length and H0 thickness of its wall. These values
are constant. The geometry of a shell which is looked for in the optimization task is
described by the following symbols: R and H are the radius and wall thickness, Rϑ

and Rφ are the radii of the circumferential and meridional curvatures, respectively.
The shell is loaded by an external hydrostatic pressure p.

Figure 1 Rotationally symmetrical shell subjected to external pressure
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The meridional and circumferential radii are given by the formulas:

Rφ =

(
1 +R′2)3/2
−R′′ (1)

Rϑ = R
(
1 +R′2)1/2 (2)

For further calculations it is more convenient to introduce the following dimension-
less quantities:

r =
R

R0
rϑ =

Rϑ

R0
rφ =

Rφ

R0
k =

Rφ

Rϑ

(3)

ξ =
x

L0
ζ = ξ · 100 h =

H
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It is assumed that the shape of meridian is described by the parabola:

r (ξ) = r0
(
1 +mξ2

)
(4)

r0 =
1√

1 + 2
3m+ m2

5

(5)

where r0 stands for unknown radius in the middle of the shell, and the directional
coefficient m (m ≤ 0) is a design variable in the optimization procedure.

For a shell with a double non–negative curvature [8] transformed a problem
of global stability to a problem of local stability of such a structure. First, the
sinusoidal deflection mode was assumed. Next, on the base of the linear theory
of shell stability and the equations given by [9], Shirshov obtained formula for the
critical loading parameter q, namely:

q1,2 = 2
√
DEH

Kφ +Kϑz
2
1,2

Nϑ + 2Sz1,2 +Nφz21,2

(6)

qkr = min (q1, q2)

where z1,2 are the roots of the quadratic equation:

z2 +
KϑNφ −KφNϑ

KϑS
z − Kφ

Kϑ
= 0 (7)

z = tgϕ (8)

z1,2 = −Nφ

S
∓

√√√√N
2

φ

S
2 +

Kϑ

Kφ
(9)

In the above equations the following symbols were introduced: Kϑ and Kφ denote
circumferential and meridional curvatures, respectively, Nϑ, Nφ, S are the intensity
of membrane and shearing forces (due to possible twisting) related to the loading
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multiplier q, namely Nϑ = qNϑ, Nφ = qNφ, S = qS, D denotes the shell stiffness,
E – Young modulus and ϕ is a certain free parameter with respect to which the
loading parameter q is minimized.

The minimization of q with respect to ϕ leads to two solutions: ϕ1 = 0 and ϕ2 =
π
2 and finally to very simple formulae for the critical loading multipliers. First one is
for a case when the buckling is determined by the circumferential membrane force,
whereas second one when the buckling is determined by the meridional membrane
force:

q1kr = 2
√
DEH

Kφ

Nϑ

(10)

q2kr = 2
√
DEH

Kϑ

Nφ

(11)

The critical value of loading multiplier is determined by a smaller one value from
(10), (11). For the considered shell S = 0, and the membrane forces are as follows:

Nϑ =
pRϑ

2

(
2− Rϑ

Rφ

)
(12)

Nφ =
pRϑ

2
(13)

Using equations given above (1), (2), (10), (11) and (12), (13) one can obtain the
two equations describing the wall thickness of a shell of uniform stability.

For Nϑ critical:

h1 =

√
pkr

√
3 (1− ν2)
2E

R0

H0
rϑ
√
(2k − 1) (14)

For Nφ critical:

h2 =

√
pkr

√
3 (1− ν2)
2E

R0

H0
rϑ (15)

For a shell of a medium length considered in this paper, the critical component
of membrane force is circumferential one, so the equation (14) holds and qkr = q1kr.

3. Formulation of the optimization problem

The optimization task is formulated as a nonlinear programming problem. In first
stage of the optimization with given parabolic shape of a meridian, we look for such
a value of parabola directional coefficient and distribution of a wall thickness of the
shell, which lead to the maximal value of the critical loading multiplier:

qkr → max (16)

Such an optimization problem is stated under two inequality and one equality con-
straints. It is assumed that an optimal shell is made with no more amount of
material than a cylindrical reference shell,

2πL0R0H0 ≥ 2π

L0∫
0

HRϑdx (17)
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the internal capacity of both containers is equal:

2πL0R
2
0 = 2π

L0∫
0

R2dx (18)

Moreover, the minimal value of the coordinate R which occurs at the interface of
the coat and bottom of a shell is constrained by a lower bound,

R (L0) = Rmin ≥ Radm (19)

where Radm is an arbitrary chosen value. The measure of the optimal shell profit is
ratio of critical pressure of the optimal shell to the critical pressure of the reference
cylinder, that is the critical value of a loading multiplier,

qkr =
pkr

pcylkr

(20)

where pcylkr is defined by the following formula:

pcylkr =
π
√
6E

18 (1− ν2)3/4
R0

L0

(
H0

L0

)5/2

(21)

which can be found in e.g. [10].
In next stage of the optimization, the optimal shell from first stage is reinforced

with additional ribs. The assumed number of ribs equals three and is kept constant.
The ribs are modeled as thin-walled plates. It is assumed that an every rib has a
hole of arbitrary chosen radius value, equals 92% of the shell radius in the place
where the rib is welded to the coat of a shell. The design variables are the positions
of ribs in the shell:

ζi i = 1, 2, 3 (22)

which are measured from the origin of the coordinate system. These design vari-
ables are treated as integer ones due to the density of finite element mesh along
the meridian of the shell and have to be in a range ζi ∈ [0, 100]. It is obvious
that the ribs stiffen the shell and the critical value of loading multiplier should be
greater. The objective function is the same as in the first stage of the optimization
(16). The shape of meridian is kept unchanged so the constraints (18) and (19) are
automatically fulfilled (it is assumed that the capacity of a shell does not depend
on a volume of ribs). By contrast, the amount of material has to be distributed on
the coat of the shell and its ribs:

2πL0R0H0 ≥ α · 2π
L0∫
0

HRϑdx+
3∑

i=1

Vi i = 1..3 (23)

where Vi is a volume of i–th rib, which a constant thickness equals a thickness of
shell where a rib is welded to a coat. The factor α ∈ [0.9, 1] can be named as a
thinning coefficient of a shell of uniform stability.
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4. Method of solution

The Finite Element Method (FEM) was used to solve the analysis task. The para-
metric model of the shell was built in APDL (ANSYS Parametric Design Language)
in ANSYS software. The formula (14) defining the wall thickness of shell of uniform
stability was coded in script language what made it possible to carry out calcula-
tions in first stage of the optimization. The results of analysis are passed to the
Modified Particle Swarm Optimization (MPSO) algorithm.

The PSO algorithm is inspired by social living forms: bee swarms, bird flocks
and fish schools from the world of the nature. Individuals forming a swarm influence
each other and are affected by the environment, simultaneously. A population of
particles which are understood as points in multidimensional space is initialized
with random positions and velocities. They are updated then at each time step
while flowing over the search space. The velocity vector is updated based on its
own memory and information gained by the swarm, for each particle. The position
is updated based on the previous position and velocity vectors of each particle. The
update equations of the moving swarm MPSO algorithm are expressed below

vi
k+1 ← w1v

i
k + wi

2k

[
c1r

i
1k

(
pii
k − xi

k

)
+ c2r

i
2k

(
pg
k − xi

k

)
+ c3r

i
3k

(
pni
k − xi

k

)]
(24)

xi
k+1 ← xi

k + vi
k+1 (25)

where the following symbols are applied:
k – iteration step index,
i – particle index,
c1, c2, c3 – fixed coefficients named as acceleration constants or learning factors,
r1, r2, r3 – uniformly distributed random numbers in range [0,1],
w1 – inertia weight, w2 – binary switching coefficient,
x – position vector,
v – velocity vector,
pi – the best own particle position found so far,
pn – the best particle neighbours leader position found so far,
pg – the best swarm leader position found so far.
The dimension of the position and velocity vectors equals the number of de-

sign variables in the optimization task. The fitness function evaluates the particle
position by calling the FEM analysis procedure. The MPSO deals with nonlinear
programming task with equality and inequality constraints. The ”cut–off” at the
boundary technique was applied for constraints handling. The work of the particle
swarm algorithm is managed by just a few parameters. Nevertheless, choosing the
best value for these is crucial for obtaining a rapid solution and a correct result. It
is highly probable that the solution obtained by the MPSO algorithm is a global
optimum.

The optimal shell was analysed using FEM in linear buckling analysis in ANSYS
software to determine the buckling load (first eigenvalue) and shape of its mode.
The eigenvalue problem is formulated in the following manner,

(K+ λiS) ψi = 0 (26)

where the following symbols are applied:
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K – a stiffness matrix,

S – a stress stiffness matrix (built in a static solution with prestress effects

activated),

λi – i–th eigenvalue,

ψi – i–th eigenvector of displacements (mode shape).

The pressure is considered as a follower load so the force on the surface is
a function of a pressure value and an orientation of a surface. The calculated
multipliers λi are equal buckling loads if a unit load is specified. In this case a value
of critical pressure equals a value of first eigenvalue:

pkr = λ1 (27)

From formulas (20) and (27) it is easy to obtain the relation between critical loading
multiplier and first eigenvalue from buckling analysis:

qkr =
λ1

pcylkr

(28)

5. Numerical results

The geometrical and material data of the shell are as following: longitudinal pa-
rameter µ = 0.25, the wall thickness of the reference shell H0 = 0.005R0 [m], the
Young modulus E = 2.1e5 [MPa], Poisson ratio ν = 0.3, the radius of the reference
shell R0 = 1 [m] and Radm = 0.5 [m]. The swarm was constituted by three parti-
cles. Every one particle had one neighbour. The stop criterion of optimization was
number of iteration steps equals 25.

The history of the optimization profit and parabola directional coefficient on
subsequent steps is presented in Fig. 2 for first stage of the optimization. In
Fig. 3 the history of second stage of the optimization is presented. The results of
optimization are given in Tab. 1.

Table 1 The values of critical loading multipliers, design variables and material constraint for the
optimal shells

Shell not stiffened Shell stiffened by ribs
Uniform
stability

Buckling
analysis

Buckling analysis

Critical loading
multiplier qkr

6.595152 6.634736 8.926179

Design variables m = -0.588637 ζ1 = 45
ζ2 = 76
ζ3 = 14
α = 0.926061

Constraint value [m3] 0.125663 0.123775
Limit value of
constraint [m3]

0.125663
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Figure 2 The history of first stage of the optimization

Figure 3 The history of second stage of the optimization
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In both stages of the optimization the active constraint was amount of material,
given by formula (17) in first stage or (23) in second one. The obtained results
confirm these known in literature, e.g. [2, 11] in which optimization task was solved
by parametrical optimization. The value of critical loading multiplier was verified
by buckling analysis in ANSYS. The results are similar each other, so one can
concludes that this value is positively verified.

Fig. 4 shows the shape of a meridian and distribution of the wall thickness of
the optimal shell obtained in the first stage of optimization. The reference structure
is shown in the background, also (the bottoms are not shown). The wall thickness
was multiplied by 30 for better presentation, whereas radii kept its original values.
It can be observed that the wall thickness distribution is a decreasing function.

Figure 4 The wall thickness distribution and a shape of meridian of the optimal shell without
ribs (the coat of shell is shown only)

In Fig. 5 the shape of the first mode of buckling for the optimal shell obtained in
the first stage is presented.

In the second stage of optimization the arrangements of ribs as well as the value
of thinning coefficient of shell are looked for. It was successful to get the increase
of critical multiplier value. The shape of the first mode of buckling for the optimal
shell is presented in Fig. 6.

It is supposed to obtain even better results if the number of ribs, the hole radius
in rib, and wall thickness distribution (constant or variable) in every rib would be
treated as the design variables.
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Figure 5 The shape of first buckling mode of the optimal shell without ribs

Figure 6 The shape of first buckling mode of the optimal shell stiffened by ribs (the shell fragment
was removed to improve readability)
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6. Concluding remarks

On the basis of the above calculations it was found that for the shell of revolution,
medium long, significantly increase of the critical loading multiplier can be ob-
tained by determining the optimal shape of the meridian, the optimal distribution
of wall thickness in coat of shell and – which gives a substantial profit – optimal
placement of ribs inside the shell. The results of optimization in formulation of
uniform stability were successfully verified by numerical buckling analysis. The ap-
plied Modified Particle Swarm Optimization algorithm gives global optimal results
in nonlinear optimization tasks with constraints for the continuous and integer type
design variables.
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