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In this study a thin–walled bar with closed quadratic cross-section is considered. The
elastic stability of axially compressed bar related to the cross–section distortion is in-
vestigated. The governing differential equation is derived with aid of the principle of
stationary total potential energy. The critical load for the simply supported bar is found
in analytical form and it is compared with the FEM solution. Sufficient accuracy of the
results is worth of noticing.

Keywords: Thin–walled bar, elastic stability, energetic approach, FEM.

1. Introduction

Both in the classical Euler theory and the theory of restrained torsion of thin–walled
bars it is assumed that the bar cross–section is non–deformable. In the context of
engineering experience, this implies the need to use diaphragms in small intervals.
If there are no diaphragms or the distance between them is large one should take
into consideration the cross–section deformation of the bar. Up to date the local
stability of walls in the frame of plate buckling analysis and the global stability of the
bar has been well developed [1, 2, 4, 3, 5]. However, there are hardly a few papers
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Figure 1 Schematic diagram of the bar and expected deformation of cross–section a) without and
b) with internal walls

dealing with the stability of bars including the deformability of the bar cross–section.
Particularly noteworthy is the article written by A. Chudzikiewicz [6], in which the
possibility of stability loss due to the cross–section deformation is investigated.
The main topic of this paper is a detailed stability analysis of a bar with closed
deformable quadratic cross–section with or without internal walls and equal the
wall thickness (Fig. 1a, b). In this case flexural buckling, torsional buckling and
distortional buckling due to the cross–section deformation are independent of each
other therefore in this paper only elastic distortional buckling analysis is considered.
The one dimensional model of the bar is taken into account and the governing
differential equation is derived using the stationary energy theorem. The most
important in engineering practice is to describe the geometrical properties of the
bar cross–section in which the critical distortional buckling load is less than the
flexural or torsional one.

2. Elastic energy of distortional buckling

Let us consider an axially compressed bar stiffened by two diaphragms at both
ends and with freedom of warping (Fig. 1c). We apply for solving our problem
a fundamental concept of minimum total potential energy Π. The total potential
energy Π, is the sum of the elastic strain energy V , stored in the deformed body
and the potential energy U , of the applied loads.

The potential energy of cross–sectional distortions Vp can be described as:

Vp =
1

2
4

∫ l

0

∫ a

0
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2
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where bending moments of one wall M and the factor Kγ Eq. (1) are defined as:
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The elastic bending energy Vg of the bar in longitudinal direction is:

Vg =
1

2
4

∫ l

0
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z

EJg
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EJga

2

∫ l

0

γ′′ 2 dz =
1
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Kγ

∫ l

0

γ′′ 2 dz (3)

where the bending moment Mz and the factor Kg Eq. (3) are defined as:

Mz = −EJgu
′′ = −EJg

a

2
γ′′

(4)

Kg
def
= EJga
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Ea5δ

12

In addition, the potential energy of torsion of the cross–section walls Vs is taken
into account:

Vs =
1

2
GJd 4

∫ l

0

γ′ 2 dz =
1

2
Ks

∫ l

0

γ′ 2 dz (5)

where GJd is the free torsional rigidity of walls. The factor Ks Eq. (5) is defined
as:

Ks
def
= 4GJd =

4

3
Gδ3a (6)

Moreover, the potential energy U I
p of the compressive loads P due to all cross–

section walls bending:

U I
p = −1
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4
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and walls torsion U II
p is taken into account:

U II
p = −1

2
4
P

4
r20

∫ l
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0
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where r20 is a square of polar radius of gyration, which is given by:

r20 =
J0
A

=
1
2 (a

3δ + δ3a)

aδ
=

1

12
(a2 + δ2)

in which a it is a height of cross–section and δ is a wall thickness.
The total potential energy Π can be written as a sum of previously defined parts of
energy:

Π = Vp + Vg + Vs + U I
p + U II

p (9)

After substitution of the individual components Eqs (1), (3), (5), (7), (8) we get:

Π =
1

2
Kγ

∫ l

0

γ2 dz +
1

2
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1

4
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0
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The necessary condition of the stationary total potential energy can be written as:

Πmin → δΠ = 0 (11)
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Table 1 Values of the coefficient χ in case of bars without internal walls (for n = 1 and ν = 0.33)
l/a

4 8 10 12 16 20
20 0.50 2.30 5.04 10.02 30.75 74.42
50 0.39 0.68 1.12 1.92 5.24 12.23

a/δ 100 0.38 0.45 0.56 0.76 1.59 3.34
150 0.37 0.40 0.45 0.54 0.91 1.69
200 0.37 0.39 0.42 0.47 0.68 1.11

Table 2 Values of the coefficient χ in case of bars with internal walls (for n = 1 and ν = 0.33)
l/a

4 8 10 12 16 20
20 1.36 20.37 49.47 102.34 322.70 787.08
50 0.27 3.32 7.99 16.47 51.83 126.33

a/δ 100 0.11 0.87 2.04 4.16 13.00 31.64
150 0.08 0.42 0.94 1.88 5.81 14.09
200 0.07 0.26 0.55 1.08 3.29 7.95

Kgγ
IV +

{
Pa2

12

[
4 +

( δ
a

)2]
−Ks

}
γ′′ +Kγγ = 0 (12)

The final form of the governing differential equation (12) is:

γIV + 2αγ′′ + β2γ = 0 (13)

where
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The general solution of the equation (13) is:

γ(z) = C1cosh(t1z) + C2cosh(t1z) + C3sinh(t2z) + C4sinh(t2z) (14)

where t1 and t2 are:

t1 =

√
−α−

√
α2 − β2, t2 =

√
−α+

√
α2 − β2

Table 3 The critical load [MN] (for n = 1, E = 70 GPa, ν = 0.33, δ = 0.01 m, a = 0.4 m)

Without internal walls FEM Eq. (16) Eq. (21)
l= 3 m χ = 0.75 23.092 24.510 23.466
Difference 5.8 % 1.6 %
l= 2.3 m χ = 0.5 25.125 28.190 26.132
Difference 10.9 % 4 %
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Table 4 The critical load [MN] (for n = 1, E = 70 GPa, ν = 0.33, δ = 0.01 m, a = 0.4 m)

With internal walls FEM Eq. (17)
l= 2 m χ = 0.85 73.642 70.549
Difference 4.2 %
l= 1.73 m χ = 0.5 72.718 56.231
Difference 22.7 %

3. Buckling of simply supported bar

Let us consider a simply supported bar with or without internal walls, compressed
by axial loads P (Fig. 1c). Substituting the boundary conditions of the form:

z = 0; γ = 0; γ′′ = 0

z = l; γ = 0; γ′′ = 0

to the equation (14), solving the resulting system of equations and equating the
resolving to zero, we receive:

2α =
π2

l2
+ β2 l2

π2
(15)

From the equation (15) we obtain the formula for the distortional critical load in
case of any number of deformed state n:

Pn
kr =

δ(n4a6Eπ4 + 48 l4Eδ2 + 16 a2Gl2n2π2δ2)

al2n2π2(4a2 + δ2)
(16)

Proceeding similarly but in case of the bar with internal walls (now we have 12
walls instead 4 as in the previous case (Fig. 1)) we get the formula for critical load
for any n:

Pn
kr =

3 δ(n4a6Eπ4 + 3072 l4Eδ2 + 512 a2Gl2n2π2δ2)

64 al2n2π2(a2 + δ2)
(17)

In both cases, the critical load Pkr may be expressed in terms of critical load of
flexural buckling PE by using the coefficient χ:

Pkr = χPE = χ
π2EJc

l2
(18)

In the case of bars without internal walls we have:

χ =

6 l2
(

a6π2n2

l2 + 48 l2δ2

n2π2 + 8 a2δ2
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)
a2π2(4 a2 + δ2)2
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and in the case of bars with internal walls:

χ =

3 l2
(

a6π2n2

l2 + 3072 l2δ2

n2π2 + 256 a2δ2

1+ν

)
16 a2π2(a2 + δ2)(3 a2 + δ2)

(20)
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If χ > 1 the Euler critical load PE is smaller than the load corresponding the
distortional buckling. The derived formulas for critical loads are valid only if χ < 1.
Example values of the coefficient χ obtained from equations (19) and (20) are shown
in Tab. 1. and Tab. 2. These values depend on the relationships a

δ and l
a in case

of constant value of the Poisson ratio ν. In Figs. 2, 3, 4 are shown the relation of
change of values of critical force P in the dependence on dimensions l, a and δ in
case of bars with/without internal walls.
Results of theoretical and numerical analysis were also compared with the solution
using the Timoshenko energy method [1], [6] (for n = 1 and m = 1) in the case of
cross–section without internal walls:

Pn
kr =

(
2 a6n4 − (l2m2+a2n2)2δ2

ν2−1

6a6n2

)
π2EJc

l2
(21)

Figure 2 The critical load P vs. height of cross–section a and bar length l, for the cross–section
without and with internal walls, respectively

Figure 3 The critical load P vs. thickness of walls δ and length of bar l, for the cross–section
without and with internal walls, respectively

In Tab. 3. and Tab. 4. presented results of calculation of critical loads for
different values of the coefficient χ, in cases:

• proposed solutions Eqs. (16), (17),
• analytical solution by Chudzikiewicz [6] Eq. (21),
• FEM,

for cross–sections with/without internal walls (Fig. 1).

4. Conclusions

The distortional mode of elastic stability loss of the thin–walled box–type bars is
discussed in the paper. We should remember that exceeding the Euler force is more
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Figure 4 The critical load P vs. thickness of walls δ and height of cross–section a, for the
cross–section without and with internal walls, respectively

Figure 5 First mode of distortional buckling - Abaqus (Tab. 3.) – Pkr = 23.092 MN)

Figure 6 First mode of distortional buckling - Abaqus (Tab. 4.) – Pkr = 73.642 MN)

significant because is generally closer to the failure load than the considered critical
load (16), (17). However, in all studied cases the solution it is dominated by plate
buckling.
The results summarized in Tab. 3. and Tab. 4. show that the distortional buckling
in elastic range is not possible for bars made of standard metals used in construction
(steel, aluminum). On the other hands, how Chudzikiewicz notices in his article [6]:
for bars made of materials with low modulus of elasticity and high elastic limit the
buckling under consideration may be of some importance also in practical cases.
Some aluminum alloys can meet these conditions. It is worthwhile noticing that
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using the derived formulas (16), (17) we can calculate the critical loads with the
sufficient accuracy. In the case of bars for which the value of χ coefficient is close
to 1 the error should not exceed 5%.
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