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The paper is devoted to a cold–formed, thin–walled channel beam. The appropriately
shaped flanges are orthotropic structures. The mathematical model of the beam has
been described. Geometrical properties of the cross section have been derived, and
critical stresses of global buckling have been calculated. Two cases are considered: the
problem of lateral buckling (the beam under pure bending) and the problem of global
buckling (the beam under compression). The study of global buckling includes flexural
and torsional buckling. The numerical model of the beam has also been formulated. The
critical loads have been analytically and numerically (with the use of FEM – finite strip
method) calculated. The obtained results have been compared and presented in Figures
and Tables.
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1. Introduction

Cold–formed thin–walled beams are widely applied in many engineering structures
– vehicles, machines, buildings and others. Thin–walled beams are at risk of losing
their stability. The global buckling especially lateral buckling phenomenon as well
as local buckling of beam parts play crucial role and they must not be omitted while
designing process. Strength and buckling problems of these beams are described
in many monographs and papers of the 20th century, for example in chronological
order by Vlasov [1], Bleich [2], Timoshenko and Gere [3], Murray [4], Bažant and
Cedolin [5], Weiss and Giżejowski [6], and Trahair [7].

Besides monographs, these problems have been presented in many papers for
years. Rasmussen [8] presented a general bifurcation analysis of thin–walled beams.
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Hancock [9] used FSM (finite strip method) to study local, distortional and flexural–
torsional buckling problems of I–beams, and together with Papangelis [10] studied
analytically and numerically buckling problems of thin–walled beams with open
and closed cross sections. Put et al. [11, 12] concentrated with cold–formed lipped
channel–section beams.

Shapes of flanges or webs of cold–formed thin–walled channel beams are rather
complicated. Davis [13], Magnucki and Paczos [14] overview problems of channel
beams. Selected problems of buckling and optimal design of cold–formed thin–
walled beams were reviewed by Magnucka–Blandzi and Magnucki [15].

The subject of the paper is thin–walled channel beams with orthotropic flanges.
The beam is compressed (Fig. 1) or in pure bending state. Flanges consist of two
plates. The outer one (a top site of the flange) is a flat plate. The second one
(a bottom site of the flange) is corrugated plate (a cosine wave) as it is shown in
Fig. 1. Top and bottom parts of each flange are not joined together. These parts
are in contact only.

Figure 1 Scheme of simply supported thin–walled channel beam and loads

2. Geometric Properties of the Cross Section of the Beam

The cross section of the considered beam is mono–symmetrical C–section. Its
scheme with principal axes yz is shown in Fig. 2. The origin O (0, 0) and the
shear center (the point C) are located on the z–axis of symmetry.

Letter t denotes a thickness of the beam, ca and b0 its amplitude and period
respectively, a and b dimensions of the cross section, and H = 2a+ t a depth of the
beam.

Dimensionless parameters are

m x0 =
b0
b

x1 =
b1
b

x2 =
ca
b

x3 =
t

b
x4 =

b

a
(1)

A total area of the cross section is as follow

A = 2at f0 (x0, x1, x4) (2)

where dimensionless function is

f0 (x0, x1, x4) = 1 + x4 (1 + 2x1 +mx0S0) (3)

S0 =

1∫
0

√
1 + k2 sin2 (2πζ1) dζ1 ζ1 = z1/b0 k = π

x2

x0
(4)
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Figure 2 Scheme of the cross section of a beam with orthotropic flanges

Figure 3 Scheme of a single arc

m denotes the number of cosine waves and S0 the arc length presented in Fig. 3.
The geometric stiffness for Saint–Venant torsion of the cross section is given in the
formula

Jt =
2

3
at3f0 (x0, x1, x3, x4) (5)

The location of the centroid (point O) follows from a first moment of the cross
section with respect to the principal axis y which equals zero, i.e.

z0A− 2t

{
1

2
b2 + b1 (b+ t) +

1

2
b0S0m [2 (b1 + t) +mb0]

}
= 0 (6)

therefore

z0 =
a

2

f1 (x0, x1, x3, x4)

f0 (x0, x1, x4)
(7)
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Moments of inertia of the plane area with respect to the y and z axes are as follows

Jy = 2a3tx3
4

{
1

3
+ x1

[
1− x1 +

2

3
x2
1 + x3 (x1 + x3)

]
+mx3

0S3

+mx0S0

[
1

12
x2
0

(
4m2 − 1

)
+ (x1 + x3) (mx0 + x1 + x3)

]}
− z20A (8)

therefore

Jy = 2a3t

[
f2 (x0, x1, x3)−

1

4

f2
1 (x0, x1, x3, x4)

f0 (x0, x1, x4)

]
(9)

Jz = a3tf3 (x1, x2, x3, x4) (10)

The location of the shear center (the point C) is given by

zC − zB =
2

Jz

∫∫
A

ωBy dA (11)

where ωB is the sectorial coordinate, with respect to the auxiliary point B for
characteristic points of the cross section of a beam, as follows:

ωB1 = 0 ωB2 = −a2x4 ωB3 = ωB2 − a2x3x4 = −a2x4 (1 + x3) (12)

ωB4 = ωB3 + a2x1x4 (1− x3x4) = −a2x4 [1 + x3 − x1 (1− x3x4)]

ωB5 (z) = ωB4 + ωB (z) (13)

ωB (z) = a2 (1− x3x4)
[
2
z

a
− x4 (1 + x1)

]
− b

z∫
0

x2x0

(
1− cos

2πz0
b1

)
dz0

+a2
[
1− x3x4 −

1

2
x2x4

(
1− cos

2πz

b1

)] [
x4 (1− x1)−

z

a

]
(14)

for z = mbx0 the sectorial coordinate

ωB5 = ωB5 (mbx0) = ωB4 + a2mx0x4 [1− x4 (x2 + x3)] (15)

ωB6 = ωB5 + a2x1x4 (1− x3x4) (16)

The coordinates y for characteristic points of the cross section are:

y1 = a y2 = a y3 = a (1− x3x4) (17)

y4 = a (1− x3x4) y5 (z) = a

[
(1− x3x4)−

1

2
x2x4

(
1− cos

2πz

x1x4a

)]
(18)

for z = mbx0 the coordinate y5 = y5 (mbx0) = a (1− x3x4), and y6 = a (1− x3x4).
Therefore

zC − zB = a
f4 (x0, x1, x2, x3, x4)

f3 (x0, x1, x2, x3, x4)
(19)

The sectorial coordinates (the warping functions) with respect to the shear center
– point C for characteristic points of the cross section are:

ω1 = (zB − zC) a ω2 = ω1 − a2x4 ω3 = ω2 − a2x3x4 (x4 + zB − zC) (20)

ω4 = ω3 + a2x1x4 (1− x3x4) ω5 (z) = ω4 + ωC (z) (21)
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where

ωC (z) = 2 (a− t) z −
z∫

0

ca

[
1− cos

(
2π

z0
b0

)]
dz0

+

{
a− t− 1

2
ca

[
1− cos

(
2π

z

b0

)]}
(b− b1 − z + zB − zC) (22)

− (a− t) (b− b1 + zB − zC)

for z = mbx0

ω5 = ω5 (mbx0) = ω4 +ma2x0x4 [1− x4 (x2 + x3)] (23)

and
ω6 = ω5 + a2x1x4 (1− x3x4) (24)

Then the warping moment of inertia of the area of the cross section is as follows

Jω =

∫∫
A

ω2 (s) dA (25)

which is equal to

Jω = 2t (Jω1 + Jω2 + Jω3 + Jω4 + Jω5 + Jω6) (26)

where

Jω1 =
1

3
a3 (zB − zC)

2
(27)

Jω2 =
1

3
a2b

[
(zB − zC − b)

2
+ (zB − zC) (2zB − 2zC − b)

]
(28)

Jω3 =
1

3
t
{
(zB − zC − b)

2
a2

+ [(zB − zC) (a− t)− b (a+ t)] [(zB − zC) (2a− t)− b (2a+ t)]} (29)

Jω4 =
1

3
b1

{
[(b1 + zB − zC) (a− t)− b (a+ t)]

2

+ [(zB − zC) (a− t)− b (a+ t)] [(b1 + 2zB − 2zC) (a− t)− 2b (a+ t)]} (30)

Jω5 = mb0
{
A2

5b
2
0S1 +A2

1b
2
0S4 + 2A1A5b

2
0S5 + 2A4A5b0S6 +A1A4b0S7

+A2
4S8 +

{
A1A2b0 +A2

2 +A3 (m− 1)

[
A2 +

1

6
A3 (2m− 1) +

1

2
A1b0

]}
S2

+

{
1

6
A2

6 [m (2m− 3) + 1] +A2
7 +A5A7b0 +A6 (m− 1) [A7

+
1

2
A5b0

]}
S0

}
(31)

Jω6 =
1

3
b1 {[(2b1 + zB − zC) (a− t)− b (a+ t) +mb0 (a− t− ca)]

[(3b1 + 2zB − 2zC) (a− t)− 2b (a+ t) + 2mb0 (a− t− ca)]

+ [(b1 + zB − zC) (a− t)− b (a+ t) +mb0 (a− t− ca)]
2
}

(32)
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3. Global Buckling

Two cases of loads are considered. The first one is a beam under pure bending
(a beam carries two equal moments at its ends). In this case, the lateral buckling
moment of a thin–walled beam under pure bending is as follows [6]:

MCR =
πE√

2 (1 + ν)L

√
JyJt

[
1 + 2 (1 + ν)

π2

L2

Jω
Jt

]
(33)

and the critical stress is given in the formula

σ
(Lateral)
CR =

MCR

Jz
a (34)

The second case is a beam subjected to a compressive force. Two global buckling
modes are taking into account. The first one – flexural buckling. Then the critical
force (the Euler critical force) is as follows [6]:

F
(Euler)
CR =

π2EJy
L2

(35)

and the critical stress can be written in the formula

σ
(Euler)
CR =

F
(Euler)
CR

A
(36)

The second case of global buckling for the beam under compression is presented,
that means – torsional buckling. Then the critical force (the Wagner critical force)
is as follows [6]:

F
(Wagner)
CR =

AE

Jy + Jz + (z0 − zc)2A

[
Jt

2 (1 + ν)
+

π2

L2
Jω

]
(37)

and the critical stress can be written in the formula

σ
(Wagner)
CR =

F
(Wagner)
CR

A
(38)

4. Numerical Calculations

Buckling problems of thin–walled channel beams with orthotropic flange are nu-
merically solved with the use of the finite strip method (CUFSM – B. Schafer).
Obtained results are compared to analytical ones. Material constants are: the
Young’s modulus E = 2 · 105 MPa, the Poisson’s ratio ν = 0.3. Horizontal axes in
all figures are the relative length λ = L/H, where L is a length of beam and H
is a height of the beam. Three examples are presented below. Each considered
beam has the same area of a cross section and these same following dimensions:
H, a, b, b1.
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4.1. Example 1

Detailed numerical analysis and results of analytical calculations have been con-
ducted for the beam with following sizes: H = 200mm, m = 5, t = 1mm, a =
(H − t)/2 = 99.5mm, b = 99.5mm, b1 = 11.75mm, b0 = (b− 2b1 − t)/m =
15mm, ca = 10mm.

The values of critical stresses have been analytically obtained (σ
(Lateral)
CR ) based

on the Eqn (34), and numerically (σ
(FSM)

CR ) with the use of FS method for lateral
buckling, and have been presented in Fig. 4 and Tab. 1.
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Figure 4 Comparison of analytical and numerical results – lateral buckling

Table 1 Critical stresses σ
(Lateral)
CR

– lateral buckling

λ 25 30 40 45 50 55 60 65

σ
(Lateral)
CR 94.64 66.30 38.11 30.50 25.05 21.01 17.94 15.54

σ
(FSM)

CR 87.78 63.95 37.78 30.38 25.03 21.03 17.98 15.59
Relative
error %

7.81 3.67 0.87 0.39 0.08 0.10 0.22 0.32

λ 70 90 110 130 145 160 175 185

σ
(Lateral)
CR 13.63 8.89 6.45 5.01 4.28 3.73 3.31 3.08

σ
(FSM)

CR 13.68 8.93 6.48 5.04 4.30 3.75 3.33 3.09
Relative
error %

0.37 0.45 0.47 0.60 0.47 0.54 0.60 0.32

While the beam has been compressed two types of buckling mode have occurred:
flexural and torsional buckling. The values of critical stresses have been analytically
calculated based on Eqs. (35) and (38) respectively. Comparison of numerical and
analytical results have been presented in Fig. 5 for flexural and torsional buckling
modes.
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Figure 5 Comparison of analytical and numerical results for flexural and torsional buckling

In Tab. 2 and Fig. 6 comparison of analytical and numerical calculations for
torsional buckling mode is only shown, and in Tab. 3 and Fig. 7 only for flexural
buckling.
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Figure 6 Comparison of analytical and numerical results for torsional buckling
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Table 2 Critical stresses σ
(Wagner)
CR

– torsional buckling

λ 15 20 25 30 40 45 50

σ
(Wagner)
CR 108.43 61.70 40.07 28.32 16.64 13.48 11.23

σ
(FSM)

CR 91.89 57.33 38.12 27.15 16.01 12.98 10.8
Relative
error %

18.00 7.62 5.12 4.31 3.94 3.85 3.98

λ 55 60 65 70 90 110 130

σ
(Wagner)
CR 9.56 8.29 7.30 6.52 4.58 3.60 3.04

σ
(FSM)

CR 9.19 7.96 7.01 6.25 4.36 3.4 2.84
Relative
error %

4.03 4.15 4.14 4.32 5.05 5.88 7.04
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Figure 7 Comparison of analytical and numerical results for flexural buckling

Table 3 Critical stresses σ
(Lateral)
CR

– flexural buckling

λ 130 135 140 145 150 155 160 165 170 185 200 225 250

σ
(Euler)
CR

3.04 2.82 2.62 2.44 2.28 2.14 2 1.88 1.78 1.5 1.28 1.01 0.82

σ
(FSM)
CR

2.84 2.73 2.64 2.47 2.3 2.16 2.03 1.9 1.79 1.52 1.3 1.02 0.83

Relative
error %

7.04 3.30 0.76 1.23 0.88 0.93 1.50 1.06 0.56 1.33 1.56 0.99 1.22
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4.2. Example 2 and 3

Detailed numerical analysis and analytical calculations have been conducted for
this same beam as in Example 1 but for a different number of cosine waves (m = 4
and m = 6), and their amplitude (ca = 12.5 mm and ca = 8.3 mm respectively).
Considered beams have the same total area of a cross section.

The values of critical stresses in both cases for lateral buckling have been pre-
sented in Fig. 8 and Tab. 4.
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Figure 8 Comparison of analytical and numerical results – lateral buckling

Table 4 Critical stresses σ
(Lateral)
CR

– lateral buckling

λ 25 30 35 40 45 50 55 60 65 70

m=4

σ
(Lateral)
CR

96.45 67.56 50.14 38.82 31.06 25.51 21.39 18.26 15.81 13.87

σ
(FSM)
CR

89.50 65.17 49.24 38.48 30.94 25.48 21.41 18.30 15.86 13.92

Relative
error %

7.77 3.67 1.83 0.88 0.39 0.12 0.09 0.22 0.32 0.36

m=6

σ
(Lateral)
CR

93.55 65.54 48.65 37.68 30.16 24.77 20.78 17.74 15.37 13.49

σ
(FSM)
CR

86.74 63.22 47.78 37.35 30.04 24.75 20.80 17.78 15.42 13.54

Relative
error %

7.85 3.67 1.82 0.88 0.40 0.08 0.10 0.23 0.33 0.37

The values of critical stresses for torsional buckling, and for m = 4 have been
presented in Fig. 9 and Tab. 5.
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Figure 9 Comparison of analytical and numerical results for flexural and torsional buckling
(m = 4)

Table 5 Values of critical stresses for flexural buckling (σ
(Euler)
CR

) and torsional buckling

(σ
(Wagner)
CR

) for m = 4

λ 50 60 70 90 110 120 130

σ
(FSM)
CR

10.89 8.02 6.28 4.38 3.41 3.09 2.84

σ
(Wagner)
CR

11.33 8.36 6.57 4.61 3.62 3.29 3.04

Relative
error %

4.04 4.24 4.62 5.25 6.16 6.47 7.04

σ
(Euler)
CR

20.52 14.25 10.47 6.33 4.24 3.56 3.04

Relative
error %

88.43 77.68 66.72 44.52 24.34 15.21 7.04

λ 140 150 170 200 225 250

σ
(FSM)
CR

2.64 2.31 1.79 1.30 1.02 0.83

σ
(Wagner)
CR

2.85 2.69 2.45 2.21 2.09 1.99

Relative
error %

7.95 16.45 36.87 70.00 104.90 139.76

σ
(Euler)
CR

2.62 2.28 1.77 1.28 1.01 0.82

Relative
error %

0.76 1.32 1.13 1.56 0.99 1.22
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The values of critical stresses for flexural buckling mode and for m = 6 have been
presented in Fig. 10 and Tab. 6.
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Figure 10 Comparison of analytical and numerical results for flexural and torsional buckling
(m = 6)

Table 6 Values of critical stresses for flexural buckling (σ
(Euler)
CR

) and torsional buckling

(σ
(Wagner)
CR

) for m = 6

λ 40 50 60 70 90 110 120

σ
(FSM)
CR

15.95 10.77 7.94 6.23 4.36 3.40 3.09

σ
(Wagner)
CR

16.56 11.18 8.26 6.50 4.57 3.60 3.28

Relative error % 3.82 3.81 4.03 4.33 4.82 5.88 6.15

σ
(Euler)
CR

32.08 20.53 14.26 10.48 6.34 4.24 3.56

Relative error % 101.13 90.62 79.60 68.22 45.41 24.71 15.21
λ 125 130 140 150 170 200 240

σ
(FSM)
CR

2.96 2.84 2.64 2.31 1.79 1.30 0.90

σ
(Wagner)
CR

3.15 3.03 2.84 2.68 2.45 2.22 2.04

Relative error % 6.42 6.69 7.58 16.02 36.87 70.77 126.67

σ
(Euler)
CR

3.28 3.03 2.62 2.28 1.78 1.28 0.89

Relative error % 10.81 6.69 0.76 1.32 0.56 1.56 1.12
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5. Conclusions

In the paper the mathematical model of a cold–formed thin–walled channel beam
with orthotropic flanges is presented. Analytical and numerical studies are devoted
to global buckling. Two cases of loads are considered: the first one is the beam
axially compressed and the second one the beam under pure bending. The formulas
for global buckling critical loads are obtained. Numerical calculations have been
performed not only using analytical formulae presented in the paper but also with
the use of finite strip method. The values of critical loads obtained from each
method correspond to each other very well. The change of cosine waves number
does not have crucial influence for differences between analytical and numerical
results. Differences decrease in lateral buckling mode for sufficiently long beams
if the beam length increases. When the beam is axially compressed the influence
of torsion on the buckling load may be observed for the shorter beam while the
flexural buckling mode has revealed for the longer one.
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Appendix: Detailed expressions

Dimensionless functions:

f1 (x0, x1, x3, x4) = x2
4 {1 + x1 (2x3 + 2) + x0S0 m [2 (x1 + x3) +mx0] }

+mx0S0

[
1

12
x2
0

(
4m2 − 1

)
+ (x1 + x3) (mx0 + x1 + x3)

]}
(39)

f2 (x0, x1, x3, x4) = x4
3

{
1

3
+ x1

[
1− x1 +

2

3
x2
1 + x3(x1 + x3)

]
+mx3

0S3

+mx0S0

[
1

12
x2
0(4m

2 − 1) + (x1 + x3) (mx0 + x1 + x3)

]}
(40)

+mx0S0

[
1

12
x2
0

(
4m2 − 1

)
+ (x1 + x3) (mx0 + x1 + x3)

]}
f3 (x0, x1, x2, x3, x4) =

2

3
+ +2x4

{[
1 + 2x1 (1− x3x4)

2
]

+mx0

{
x2
2x

2
4S2

4
+

[
1−

(
x3x4 +

1

2
x2x4

)]2
S0

}}
(41)

f4 (x0, x1, x2, x3, x4) = {−1 + 2x1 (1− x3x4) [−2 (1 + x3x4)

+ (2x1 +mx0) (1− x3x4)−mx0x2x4] +mx0 {[− (1 + x3x4)

− 1
2x2x4 + x1

(
1 + 1

2x2x4 − x3x4

)
+ 1

2mx0

(
1− 1

2x2x4 − x3x4

)]
(2− x2x4 − 2x3x4)S0 +

1
4 (x2x4)

3(2− 2x1 −mx0)S0

}}
x2
4 (42)

Non–elementary integrals:

S1 =

1∫
0

ζ2
√

1 + k2 sin2 (2πζ)dζ (43)

S2 =

1∫
0

cos2 (2πζ1)

√
1 + k2 sin2 (2πζ1) dζ1 (44)

S3 = 2

1
2∫

0

ζ21

√
1 + k2 sin2 (2πζ1)dζ1 (45)

S4 =

1∫
0

ζ2 cos2 (2πζ)

√
1 + k2 sin2 (2πζ) dζ (46)

S5 =

1∫
0

ζ2 cos (2πζ)

√
1 + k2 sin2 (2πζ) dζ (47)
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S6 =

1∫
0

ζ sin (2πζ)

√
1 + k2 sin2 (2πζ) dζ (48)

S7 =

1∫
0

ζ sin (4πζ)

√
1 + k2 sin2 (2πζ) dζ (49)

S8 =

1∫
0

sin2 (2πζ)

√
1 + k2 sin2 (2πζ) dζ (50)

Constants:

A1 = −1

2
ca, A2 =

1

2
ca (b− b1 + zB − zC) , A3 = −1

2
cab0 (51)

A4 =
1

2π
cab0, A5 = a− t− 1

2
ca, A6 =

1

2
b0 (2a− 2t− ca) (52)

A7 = −1

2
[2a (b− b1 − zB + zC) + b1 (2t− ca)

+ (ca + 2t) (b+ zB − zC)] (53)


