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Ma lgorzata Chwa l

Institute of Machine Design
Cracow University of Technology

al. Jana Pawa II 37, 31–864 Cracow, Poland

Received (11 March 2013)

Revised (16 April 2013)

Accepted (20 May 2013)

In the paper the eigenfrequencies of pristine and defective single-walled carbon nanotubes
are investigated. The defects are in the form of point vacancies. The axial vibrations
of structures are studied only. A special attention is focused on the effects of material
and geometrical properties of nanostructures on the results. Three different models
are considered: the Euler beam model, a continuous specially orthotropic model and
a 3D nonlinear finite element model consistent with molecular mechanics formulations.
The results demonstrate that the Euler beam model overestimates the values of natural
frequencies.
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1. Introduction

Recent studies have indicated that carbon nanotubes (CNTs) exhibit superior me-
chanical and electronic properties over any known materials. Due to their novel elec-
tronic, mechanical and other physical and chemical properties, CNTs have potential
applications in atomic–force microscopes, field emitters, nanoactuators, nanomo-
tors, nanbearings, nanosprings, nanofillers for composite materials, and nanoscale
electronic devices. Hence, carbon nanotubes (CNTs) have become the focal points
of studies in computational nanomechanics and computational condensed-matter
physics over the recent years, including vibrational behavior. Since controlled ex-
periments at the nanometer scale are very difficult, two approaches are widely used
for the researches on CNTs. One is the molecular dynamics simulations which is
very time-consuming and remains formidable for large–scale systems. The other
is the continuum mechanics methods such as shell and beam modeling of CNTs.
Via nanotechnology, the nonlocal theory has been applied to analyze vibration and
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wave propagation of CNTs based on the beam models [1–5], including also the
non-linear interaction with the surrounding medium [6]. Ru [7-8] used the elastic
shell model to conduct buckling analyses of CNTs. Yakobson et al. [9] noticed
the unique features of fullerenes and developed a continuum shell model to study
different instability patterns of CNTs under different compressive loads. He et al.
[10-13] investigated the buckling behavior of CNTs using elastic shell model having
the van der Waals effect. Muc [14] discussed the applicability of thin shell theory
in predicting behavior of CNTs.

In contrast to theoretical considerations the experimental verifications of the
CNTs strength or Young’s modulus demonstrate evidently discrepancies that may
reach even up to 30% - see e.g. Mielke et al. [15]. Possible single or multiple defects
in CNTs provide an explanation for the extant theoretical–experimental differences.

However, this deterioration in the mechanical characteristics is partly alleviated
by the ability of nanotubes to heal vacancies in the atomic network by saturating
dangling bonds. The defects can appear at the stage of CNTs growth and purifica-
tion, or later on during device or composite production. Moreover, defects in CNTs
can deliberately be created by chemical treatment or by irradiation to achieve the
desired functionality. Therefore, possible defects in CNTs can be classified in the
following manner: 1) point defects such as vacancies, 2) topological defects caused
by forming pentagons and heptagons e.g. 5-7-7-5 defect – so-called Stone-Wales
defects, 3) hybridization defects due to functionalization. It is possible to consider
single walled CNTs (SWCNTs) with a single vacancy (one atom removed), with a
double vacancy (two adjacent atoms knocked out) and with a triple vacancy (three
adjacent atoms missing), as depicted in Fig. 1. In what follows, these configurations
will be referred to as non–reconstructed defects. In each tube the non–reconstructed
double vacancy defects have two axially distinguishable orientations separated by
120 degrees (only one configuration is shown in Fig. 1). These atomic configura-
tions are metastable but can survive for macroscopic times at low temperatures or
when the atoms with dangling bonds are bonded to a surrounding medium, e.g., a
polymer matrix.

In this study the axial vibrations of SWCNTs are analyzed only. The free
vibrations are investigated with the use of three different models:

• the Euler beam model,

• the continuous specially orthotropic cylindrical shell model,

• the 3-D FE beam model based on the molecular dynamic and the interatomic
potential formulations.

The numerical results are presented for one nanostructure configuration only; how-
ever, they can be easily extended for other form of structures. The lack of appro-
priate material properties is especially emphasized.
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Figure 1 Atomic networks of SWCNTs with non–reconstructed (a, c) and reconstructed (b,
d) single (a, b) and double (c, d) vacancy. Only the front wall of each tube is shown. The
configurations correspond to (10,10) armchair SWCNT

2. Free Vibrations of Pristine CNTs

A single–walled carbon nanotube can be defined as a hollow cylinder rolled from
a graphene sheet. The nanotube, composed of carbon hexagons, is indexed by a
pair of integers (n1, n2) to represent its helicity. The radius of the nanotube is
calculated as:

R = a
√

3 (n12 + n22 + n1n2)/ (2π) (1)

where a = 0.142 [nm] is the C–C bond length. One type of nanotubes, armchair
(n1 = n2, i.e. R = 0.0678*n1 [nm]) is studied in this paper.

In the literature it is demonstrated that for small radius of the nanotubes the
buckling mode falls into the regime of Euler beam buckling (R < 0.8 [nm]) and
then with the increase of the radius the circumferential modes of buckling (i.e. for
n > 1) becomes to be dominant. Therefore the analytical studies are limited to the
axisymmetric buckling/vibration analysis only, i.e. n = 0 and m > 0. For simply
supported cylindrical shells (Fig. 2) made of a specially orthotropic material the
eigenfrequencies can be easily derived in the analytical way using the Rayleigh–Ritz
method as the roots of the following equation:

ψ3 + b0ψ
2 + c0ψ − d0 = 0 (2)



160 Muc, A., Banaś, A., Chwa l, M.

Figure 2 A cylindrical shell equivalent in mechanical response to a SWCNT

where:

b0 = −a11 − a22 − a33 c0 = a11a22 + a11a33 + a22a33 − a213

d0 = a11a22a33 − a22a
2
13 a11 = λ2m

a22 =
A66

A11
λ2m a33 =

A22

A11
+

h2

12R2
λ4m (3)

a13 = −A12

A11
λm λm =

mπR

L
ψ = ρR2hω2/A11

ρ, R, h and L denote the nanotube density, radius, equivalent thickness and length,
respectively, and m,n are wavenumbers in the longitudinal and circumferential di-
rections. Aij are the membrane stiffness matrix coefficients for specially orthotropic
bodies. The roots of Eq. (2) can be represented as follows:

ψ1 = a22, ψ2,3 =
1

2

(
a11 + a33 ±

√
a211 + 4a213 − 2a11a33 + a233

)
(4)

If the carbon nanotube arrays are assumed to be transversely isotropic the material
properties in the circumferential and thickness directions are identical. However,
the twisted array SWCN is a helical array then, in fact, the nanotube does not
possesses completely transversely isotropic properties. Therefore five material con-
stants are necessary to characterize the CNT array behavior. Using micromechani-
cal approach Popov et al. [16] computed four of them, and Salvatat et al. [17] gave
the fifth material constants (G23). The values of constants take the following form:
E1 = 580 [GPa], E2 = E3= 9.4 [GPa], ν12 = ν13 = 0.18, ν23 = 0.90, G12 = G13

= 17.2 [GPa], G23 = 2.47 [GPa]. The direction denoted by ”1” corresponds to the
longitudinal one. In addition let us assume ρ = 600 [kg/m3] and L = 29.5 [nm].
Thus, for ψ = 1 the square root of the ratio A11/(ρhR

2) is equal to 6.55 [THz]
(n1 = n2 = 5) and is the multiplier of natural frequencies – Eq. (3). As it may be
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seen the magnitude of natural frequencies (THz) is in the range mentioned in the
literature. For (5 = n1, 5 = n2) carbon nanotubes the radius R = 0.339 [nm] the
parameter λm = 0.0314*m and it is treated as negligibly small. Since all membrane
stiffnesses Aii are proportional to the thickness parameter h so that that constant
can be omitted in the further considerations.
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Figure 3 Comparison of vibrational frequencies for different models

Fig. 3 demonstrates the comparison of the values of the frequencies described by
Eq. (4) and the value corresponding to the Euler beam model which is given by the
relation:

ψEuler =

(
mπ

h

L

)2

λ2m (5)

In Fig. 3 the x axis corresponds to the value λ2m and the y axis represents the
valueψ/λ2m. As it may be easily noticed from the relations (4) the first shell mode
is constant and equal to a22/λ

2
m, the second – a33/λ

2
m and the third (not plotted

in Fig. 3) is equal to a11/λ
2
m so that is equal to 1. It is necessary to emphasize

that the above formulas are the approximations only for the second and the third
modes but they are satisfactory for the present numerical data. In the second shell
mode and in the Euler beam model the shell thickness h is equal to 0.34 [nm]. In
the plot the first shell mode corresponds to the lowest frequency. It is worth to
mention also that in the literature the frequencies are usually compared with values
obtained with the use of the Euler beam model. However, the use of the shell model
allows us to predict lower value but the relation between those values is strongly
dependent on the assumed CNT length L. For higher values the Euler value can be
lower than that corresponding to the application of the shell model.
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3. Reconstruction of Vacancies – Evaluation of Free Vibrations

Now, the eigenfrequency analysis will be adapted to the estimations of free vibra-
tions for defective nanotubes. The reconstruction of the defective structure can be
modeled in two ways:

• the new positions of the carbon atoms are derived in order to keep the form
plotted in Figs 1.b and 1.d; in such a case the distances between C-C bonds
are constant and equal to 1.42 [nm] should be shifted below the pristine shell
structure;

• the new position are derived from the condition of the minimal energy for
neighborhood atoms; in such a situation it is necessary to introduce the in-
teraction potential – see Muc [14, 18].

In the present analysis the first simplest method is used. The key difference in
the comparison with other works is that the former bear on the intrinsic material
property (bond strength), whereas the proposed method relates to tube geometry.
It should be noted that the present analysis relies a continuum representation of
nanotubes. Since atomic scale kinematics is not considered, the analysis may tend
to over predict the eigenfrequencies of structures.

Let us consider the defective carbon nanostructure as the space–frame structure
where each of the C–C bonds is represented as a beam. The stiffness of the C–C
bond is variable but at the beginning of the deformation process it is equal to 1
[TPa]. Then, it is evaluated incrementally at each step of deformations with the aid
of the Tersoff-Brenner potential. It is assumed that in the carbon nanostructure
each carbon atom may react with the neighborhood atoms only. As the atom
moves from the equilibrium state the non-zero reaction force is computed as the
first derivative of the potential. We restrict the motion of the two atoms to one
dimension, along the line connecting them, so that the atoms can only move directly
towards or away from one another. It is necessary to point out that the C–C bond
stiffness is not equal to the stiffness moduli mentioned in the previous section since
they characterize the properties of the whole nanotube shell.

The numerical space–frame model of carbon nanotubes is presented in Fig. 4.
One of the ends of the tube is simply supported, whereas at the second the symmetry
conditions are imposed. The carbon nanotubes remain cylindrical until the critical
eigenfrequency is reached at which point they deform in the longitudinal direction
(i.e. n = 0). The half of nanotubes is modeled only due to symmetric boundary
conditions. The natural frequencies have been obtained with the use of the NISA
FE package.

Fig. 5 represents the differences in the first two eigenfreuquencies for defective
and pristine carbon nanotubes derived with the use of the beam model. The analysis
was carried out for two form of vacancies plotted in Fig. 1 and two modes of
eigenfrequencies corresponding to m = 1 and m = 2. The numerical model shows
the classical situation of the frequency decrease with the increase of the number of
vacancies. The differences reach almost 10%.
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Figure 4 Numerical model of the (5,5) carbon nanotube
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Figure 5 Frequency as a function of the number of vacancies
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4. Stress–Strain Curves

Using the FE model it is also possible to plot the stress–strain curves for the pristine
and defective nanostructures. In our approach (see Muc [19]) the Young’s modulus
of a material is defined as the ratio of longitudinal stress to longitudinal strain
as obtained from a uniaxial tension test. Following this definition, the Young’s
modulus of CNTs is been calculated using the following equation:

Elong =
⟨σlong⟩
⟨εlong⟩

, ⟨σlong⟩ =
Nbeams∑
k=1

σk
long

, ⟨εlong⟩ =
Nbeams∑
k=1

εk
long

(6)

where ⟨σlong⟩/⟨εlong⟩ is an average longitudinal stress/strain component computed
as the sum of longitudinal components of each individual beams characterizing C–C
bonds. Let us note that the above definition is more general than that described as
the global on in the first section and it is consistent with the homogenization the-
ory. At each load step corresponding to the increments of the axial displacements,
the molecular mechanics force field constants as well as the beam geometrical and
mechanical properties are evaluated in order to find the longitudinal stress com-
ponents in individual beams. This iterative, non–linear procedure goes on to the
prescribed end of the deformation process. The accuracy of modeling procedure
depends on the number of load steps chosen. In order to maximize the accuracy of
computational results, in each case, the displacement increment was chosen from
convergence tests in which the convergence criterion was set equal to 2% of the
maximal stress. Thereby, if between two sequential displacement increments a dif-
ference smaller than the 2% was achieved in the computed maximal stress, the
larger displacement increment was finally adopted for the analysis.

0 5 10 15 20 25

Strain

0

20

40

60

80

S
tr

e
ss

[G
P

a]

Pristine CNT

Defective CNT

1 vacancy

2 vacancies

Figure 6 Tensile stress–strain curves for pristine and defective (5,5) nanotube
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Fig. 6 shows the calculated stress–strain curves and Young’s modulus of pristine
and defective (with one–atom vacancy) carbon nanotubes from the present models.
At the beginning we have compared the Young’s moduli of (5, 5) armchair CNTs.
The predicted initial Young’s modulus of CNTs are 797 [GPa], 708 [GPa] and 682
[GPa] for the pristine and defective CNT with one and two vacancies (Fig. 1),
respectively, which agrees well with the experimental value and other theoretical
values mentioned previously. Those values are strongly dependent on the form of
the assumed interatomic potential and the form of defects. The defects reduce the
failure stresses by 19%, and failure strains by 32%. It may reduce also buckling
stresses for compressive loads since the defect considered may be treated as a ge-
ometrical imperfection for cylindrical shells. It is also obvious that the reduction
factor is significantly dependent on the form and magnitude of imperfections (the
assumed type of defects).

For the estimated values of Young’s moduli it is possible to find the eigenfre-
quencies. Since in the present analysis the longitudinal Young modulus is known
only the values of frequencies are computed with the aim of the Euler beam model
Eq. (5). The results are plotted in Fig. 5. Using that relation it can be easily
derived that:

ω (m = 2)

ω (m = 1)
= 4 if E identical

ωpristine

ωdefective
=

√
Epristine

Edefective
(7)

As it may be seen in Fig. 5 the Euler beam estimations of eigenfrequencies is
not correct since it gives higher values that the FE beam model. In addition, the
differences between values for the neighbourhood wavenumbers (m = 1 and m = 2)
are also too high – Eq. (7)1. On the other hand, the comparison of the frequencies
for pristine and defective nanotubes is much better – Eq. (7)2.

5. Conclusions

We have used three different models (the Euler beam model, the continuous shell
model and the FE model) to study axial free vibrations of the configuration of a
single-walled carbon nanotube with and without vacancy defects. It is found that
the best description of eigenfrequencies can be obtained with the use of the numeri-
cal FE model. However, that model should be enriched by the appropriate material
models taking into account transversely isotropic properties of nanostructures.

There is a significant difference in natural frequencies for the pristine and defec-
tive nanostructures. In view of that it is possible to use one of the most quantitative
non–destructive testing (NDT) techniques, ultrasonic NDT to distinguish defective
SWCNTs. Today it has been much progress in instrument technology so that it
will be possible to find testing techniques able to reveal anomalies in the material
property.
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