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In this paper, the mathematical modeling of the flow in a porous cylinder with a focus on
applications to solid rocket motors is presented. As usual, the cylindrical propellant grain
of a solid rocket motor is modeled as a long tube with one end closed at the headwall,
while the other remains open. The cylindrical wall is assumed to be permeable so as
to simulate the propellant burning and normal gas injection. At first, the problem
description and formulation are considered. The Navier–Stokes equations for the viscous
flow in a porous cylinder with regressing walls are reduced to a nonlinear ODE by using
a similarity transformation in time and space. Application of Differential Transformation
Method (DTM) as an approximate analytical method has been successfully applied.
Finally the results have been presented for various cases.
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1. Introduction

The flow of Newtonian and non–Newtonian fluids in a porous surface channel has
attracted the interest of many investigators in view of its applications in engineering
practice. One of these applications is to treat the internal motion of the gases in solid
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rocket motors as the superposition of a steady average flow and a conglomeration
of unsteady fields [1].

The average flow, also commonly known as the mean flow, represents the bulk
motion of the gases in the rocket and can be approximated by the steady flow
in a porous pipe. Most scientific problems such as two–dimensional viscous flow
between slowly expanding or contracting walls with weak permeability and other
fluid mechanic problems are inherently nonlinear. Except a limited number of these
problems, most of them do not have analytical solution. Therefore, these nonlinear
equations should be solved using other methods.

J. Stebel, [2] conducted a study on shape stability of incompressible fluids subject
to Navier slip, focusing on the equations of motions for incompressible fluids that
slip at the wall. It was noted that the issue of boundary conditions in fluid mechanics
has been studied for over two centuries by many distinguished scientists but still it
is subject to discussion in the mathematical community.

Makinde and Osalusi [3] investigated the steady flow in a channel with slip at
the permeable boundaries. They reported that an increase in the positive value
of flow Reynolds number (Re) represents an increase in the fluid suction while an
increase in the negative value of Re represents an increase in the fluid injection.
They also noticed that wall skin friction increases with suction and decreases with
injection and that, both slip parameter and magnetic field have great influence on
wall skin friction. A similar study was done by Makinde [4] on extending the utility
of perturbation series in problems of laminar flow in a porous pipe and diverging
channel, by considering a steady ax symmetric flow of a viscous incompressible fluid
driven.

Along a pipe by the combined effect of the wall deceleration and suction. It was
stated that a bifurcation occurs where the solutions of a non–linear system change
their qualitative character as a parameter changes. In particular, bifurcation theory
is about how the number of steady solutions of a system depends on a parameter.
Yogeshi and Denn [5] conducted a study on planar contraction flow with a slip
boundary condition in which they analyzed the creeping flow of Newtonian and
inelastic non Newtonian fluids in a planar contraction with Navier (linear) slip
boundary condition. It was found that, curved streamlines arises in the presence
of wall slip, which may be a factor in the initiation of instabilities associated with
entry flow.

The flow of an incompressible viscous fluid between a uniformly porous upper
plate and a lower impermeable plate that is subjected to a Navier slip is modeled
and analyzed in this study using analytical approaches [6–12].

2. Mathematical Formulation

Consider the laminar, isothermal and incompressible flow in a cylindrical domain
bounded by permeable surfaces with one end closed at the head well while the other
remains open. A schematic diagram of the problem is shown in Fig. 1. The walls
expand radially at a time–dependent rate a∗. Furthermore, the origin x∗ = 0 is
assumed to be the center of the classic squeeze film problem. This enables us to
assume flow symmetry about x∗ = 0.
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Figure 1 Schematic of problem

Under these assumptions, the transport equation for the unsteady flow is given as
follows:
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Where p∗, ρ, v and t are the dimensional pressure, density, kinematic viscosity
and time, respectively. Auxiliary conditions can be specified such as:

y∗ = a (t) : u∗ = 0, v∗ = −Vw = −a∗

c

y∗ = 0 :
∂u∗

∂y∗
= 0, v∗ = 0 (4)

x∗ = 0 : u∗ = 0

Using some modification and special variable [13], and the we have:

F IV + α (yF ′′′ + 3F ′′) +ReF ′F ′′′ −ReF ′F ′′ = 0 (5)

With the following boundary conditions:

y = 0 : f = 0, f ′ = 0
y = 1 : f = 1, f ′ = 0

(6)

The resulting Eqn. 5 is the classic Berman’s formula [14], with α = 0 (channel
with stationary walls). After the flow field is found, the normal pressure gradient
can be obtained by substituting the velocity components into Eqns 1–3. Hence it
is:

py = −
[
Re−1f ′′ + ff ′ + αRe−1 (f + yf ′)

]
, p =

p∗

ρV 2
w

(7)

Introducing the non–dimensional shear stress τ = τ∗

ρV 2
w
, we have:
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τ =
xf ′′

Re
(8)

3. Solution Procedure

Let x (t) be analytic in a domain D and let t = ti represents any point in D. The
function x (t) is then represented by one power series whose center is located at ti.
The Taylor series expansion function of x (t) is in the form of:

x (t) =
∞∑
k=0

(t− ti)

k!

[
dkx (t)

dtk

]
t=ti

∀t ∈ D (9)

As explained in [4] the differential transformation of the function x (t) is defined
as follows:

X (k) =
∞∑
k=0

Hk

k!

[
dkx (t)

dtk

]
t=0

(10)

Where x (t) is the original function and X (k) is the transformed function. The
differential inverse transform of X (k)is defined as follows:

x (t) =

∞∑
k=0

(
t

H!

)k

X (k) (11)

Mathematical operations performed by DTM are listed in Tab. 1.

Table 1 Some of the basic operations of DTM

Original function Transformed function
x (t) = αf (t)± βg (t) X (k) = αF (k)± βG (k)
x (t) = f (t) g (t) X (k) =

∑
k
l=0F (l)G (k − l)

x (t) = df(t)
dt X (k) = (k + 1)F (k + 1)

x (t) = d2f(t)
dt2 X (k) = (k + 1) (k + 2)F (k + 2)

Taking differential transform of Eqn. 10 by using the related definitions in Tab.
1, we obtain:

(k + 1) (k + 2) (k + 3) (k + 4)U (k + 4)

+α

(
k∑
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−Re
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In order to solve Eqn. 12, we consider the following boundary conditions:

U (0) = 0, U (2) = 0,
k∑

l=0

U (l) = 1,
k∑

l=0

lU (l) = 0 (13)

However it can be yield that the closed form of the solutions is:

U (t) = U (0)× t0 + U (1)× t1 + U (2)× t2 + · · · (14)

4. Results and Discussions

The objective of the present study was to apply DTM to obtain an explicit analytic
solution of laminar, isothermal, incompressible viscous flow in a rectangular domain
bounded by two moving porous walls, which enable the fluid to enter or exit.

Fig. 2 shows the effects of changing the Reynolds number while maintaining the
values of Non-dimensional wall dilation rate. The result shows that as the Reynolds
number increases, the normal component of velocity decrease. In Fig. 2 a proper
comparison is also made between the numerical solution obtained by Runge Kutta
method and RVIM. A great agreement between analytical solutions and numerical
ones are illustrated.

Figure 2 Effect of Reynolds number on axial velocity

In Fig. 3, the effects of non–dimensional wall dilation rate with constant Reynolds
number on radial velocity can be illustrated.
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For every level of injection or suction, in the case of expanding wall, increasing
α leads to higher radial velocity near the center and the lower radial velocity near
the wall. The reason is that the flow toward the center becomes greater to make up
for the space caused by the expansion of the wall and as a result, the radial velocity
also becomes greater near the center

Figure 3 Effect of wall dilation rate number on radial velocity

In Fig. 4 the pressure drop for case Re = 10 can be illustrated. The effects of
dilation number is also seen through plot.

Fig. 4 shows that for every level of injection or suction, the absolute pressure
change in the normal direction is lowest near the central portion. Furthermore,
by increasing non–dimensional wall dilation rates the absolute value of pressure
distribution in the normal direction increases.

Non–dimensional wall dilation rates, are plotted in Fig. 5. We can observe from
Fig. 5 that the absolute shear stress along the wall surface increases in proportion
to x. Furthermore, by increasing nondimensional wall dilation rates the absolute
value of shear stress increases.

5. Conclusions

A study of an incompressible two–dimensional flow in a channel with one porous
wall is presented in this research. The governing continuity and momentum equa-
tions together with the associated boundary conditions are first reduced to a set
of self similar non–linear coupled ordinary differential equations using similarity
transformations. Then we solved the ordinary differential equation by DTM and
the numerical method.
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Figure 4 Pressure drop for various values of dilation number

Figure 5 Shear stress changes shown over a range of dilation rate
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