A Note on the Generalized Hohmann Transfer Time

Osman M. Kamel
Astronomy and Space Science Dept.
Faculty of Sciences
Cairo University, Giza, Egypt

Received (10 March 2014)
Revised (16 October 2014)
Accepted (25 October 2014)

We calculate the transfer time from the inner to the outer elliptic planetary orbits of a space vehicle for the four feasible configurations and for the circular case. We find that the least time of transfer t_{T} corresponds to the second configuration.
Keywords: Astrodynamics, Hohmann transfer orbits.

1. Methods and Results

Generally the period of time spent in making the transfer from the inner planetary orbit to the outer one is given by [1]:

$$
\begin{equation*}
t_{T}=\pi\left[\frac{a_{T}^{3}}{\mu}\right]^{1 / 2} \tag{1}
\end{equation*}
$$

For circular inner and outer orbit case, we have:

$$
\begin{equation*}
a_{T}=\frac{a_{1}+a_{2}}{2} \tag{2}
\end{equation*}
$$

Where is the semi - major axis of the elliptic transfer orbit: a_{1}, a_{2} are the two terminal orbits radii.

From previous literature of Kamel \& Soliman [2], we discover that there are four feasible configurations for the generalized Hohmann transfer.

For the first configuration (when the apo - apse of the transfer orbit coincides with the apo - apse of the final orbit) a_{T} is given by:

$$
\begin{equation*}
a_{T}=\frac{a_{1}\left(1-e_{1}\right)+a_{2}\left(1+e_{2}\right)}{2} \tag{3}
\end{equation*}
$$

For the second configuration (when the apo - apse of the transfer orbit coincides with the peri - apse of the final orbit) ; third configuration (when the peri - apse of the transfer orbit coincides with the peri - apse of the final orbit) and fourth configuration (when the apo - apse of the transfer orbit coincides with the apo apse of the final orbit), we have respectively:

$$
\begin{align*}
& a_{T}=\frac{a_{1}\left(1-e_{1}\right)+a_{2}\left(1-e_{2}\right)}{2} \tag{4}\\
& a_{T}=\frac{a_{1}\left(1+e_{1}\right)+a_{2}\left(1-e_{2}\right)}{2} \tag{5}\\
& a_{T}=\frac{a_{1}\left(1+e_{1}\right)+a_{2}\left(1+e_{2}\right)}{2} \tag{6}
\end{align*}
$$

After little reduction, we get for the four configurations, successively:

$$
\begin{align*}
& t_{T}=\frac{\pi}{\sqrt{8 \mu}}\left[a_{1}\left(1-e_{1}\right)+a_{2}\left(1+e_{1}\right)\right]^{3 / 2} \tag{7}\\
& t_{T}=\frac{\pi}{\sqrt{8 \mu}}\left[a_{1}\left(1-e_{1}\right)+a_{2}\left(1-e_{1}\right)\right]^{3 / 2} \tag{8}\\
& t_{T}=\frac{\pi}{\sqrt{8 \mu}}\left[a_{1}\left(1+e_{1}\right)+a_{2}\left(1-e_{1}\right)\right]^{3 / 2} \tag{9}\\
& t_{T}=\frac{\pi}{\sqrt{8 \mu}}\left[a_{1}\left(1+e_{1}\right)+a_{2}\left(1+e_{1}\right)\right]^{3 / 2} \tag{10}
\end{align*}
$$

Eqs (2), (7-10) show that we acquire different results for the different configurations, and also we get a different result when we compare the time of the elliptic terminal orbits with the circular terminal ones, since from Eqs (1), (2) where $e_{1}=$ $0, e_{2}=0$, we may write for the fifth configuration

$$
\begin{equation*}
t_{T}=\frac{\pi}{\sqrt{8 \mu}}\left[a_{1}+a_{2}\right]^{3 / 2} \tag{11}
\end{equation*}
$$

For the case of Earth - Mars transfer, we calculated the value of t_{T} for the five configurations, where μ is the product of the Sun's mass and the gravitational constant. We may $\mu=1$ assume for analytical developments, and a_{1}, a_{2} are the semi - major axes of the Earth and Mars respectively, whilst e_{1}, e_{2} are the eccentricities of the Earth and Mars.

The calculations indicate that the least value of t_{T} corresponds to the second configuration.

For the case of Earth - Mars transfer, we have:

$$
a_{1}=1 ; a_{2}=1.5237 ; e_{1}=0.0167 ; e_{2}=0.0934[3]
$$

Fig	Eq.	t_{T}
1	(7)	4.7896
2	(8)	4.0389
3	(9)	4.1248
4	(10)	4.8805
Circle	(11)	4.4531

References

[1] Roy, A. E.: Orbital Motion, Fourth Edition, IOP publication Ltd., Bristol and Philadelphia, 2005.
[2] Kamel, O. M. and Soliman, A. S.: Mechanics and Mechanical Engineering, Lodz University of Technology, Poland, vol. 14 No. 1, $105-117,2010$.
[3] Murray, C. D. and Dermott, S. F.: Solar System Dynamics, Cambridge University Press, 1999.

