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An analysis of natural frequencies and modes for a cantilever radial rotating beam with
end mass is carried out within framework of Timoshenko beam model, on the base
of convenient dimensionless equations of motion depended only on two dimensionless
parameters. It is shown that the shear deformations at high angular speeds lead to
significant changes in the natural modes, and as a consequence – to relevant qualitative
effects for the natural frequencies.
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1. Introduction

Vibrations of radial rotating beams were studied in connection with various techni-
cal applications, in particular, with oscillations of turbine blades. The first studies
were performed at beginning of the twentieth century (see, e.g., [1, 2]); later the
methods of calculating the natural frequencies and modes of beams in the field of
centrifugal forces were refined ([3–9] and others), with focus on numerical methods
of determining the dynamical characteristics.

At small relative length of beams (such as blades), one can expect the substantial
increase of the role of shear deformation that are neglected in the classical Euler–
Bernoulli (E–B) beam model. Therefore in last decades researches of free and forced
oscillations of radial rotating beams were also conducted on the basis of Timoshenko
beam model, taking into account the shear deformability ([10–17] and others).

The role of centrifugal forces can be especially important in cantilever beams
with end masses (e.g., blades with bandages). Free vibration analyses for such
beams were conducted in [18–21] and others papers, but, as a rule, these researches
were carried out within framework of classical E–B model.
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In this work there are analyzed natural frequencies and natural modes of Tim-
oshenko cantilever beam with a mass at the end, rotating about the axis perpen-
dicular to the beam axis, and oscillating in the plane passing through the axis of
rotation. The analysis is based on dimensionless equations of motion which depend
on two dimensionless parameters – a shear deformability parameter and normalized
parameter of tensile centrifugal force (or angular velocity of rotation). The influence
of dimensionless parameters of the beam, of the end mass and of motion on the two
first natural frequencies and modes is studied. It is shown that the shear deforma-
tions at high angular speeds lead to significant changes in the natural modes, and
as a consequence – to relevant qualitative effects for the natural frequencies.

2. Statement of the problem. Governing equations

Let a cantilever beam of the length l having at the end a body with mass m and
moment of inertia Id, rotates with angular velocity Ω about the axis passing through
the clamped edge of the beam (Fig. 1). Natural frequencies and natural modes
are studied for free vibrations of the beam in the plane passing through the axis of
rotation. S. P Timoshenko beam model (TB) is used, and centrifugal force generated
by the mass at the edge is taken into account as well as moment of inertia forces
appearing at turning of the mass.

Figure 1 A rotating cantilever beam with end mass

Differential equations of force balance at oscillation of TB with account of longitu-
dinal tensile force N are as follows

∂Q

∂x
− ρA

∂2y

∂t2
+N

∂2y

∂x2
= 0 (1)

−ρJ ∂
2ψ

∂t2
+Q− ∂M

∂x
= 0 (2)

where y(x, t) is the full transverse deflection of the beam, ψ is the angle of rotation
of the cross section, connected with y by relation ∂y/∂x = ψ + γ, γ is the angle of
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shear, J is the moment of inertia of the beam cross section, Ais the cross–sectional
area, ρ is the density. The bending moment M and the transverse shear force Q
are expressed via y and ψ:

M = −EJ ∂ψ
∂x

, Q = k′AG

(
∂y

∂x
− ψ

)
(3)

(k′ is the shear factor which depends on shape of the cross–section).
Substituting expressions (3) in (1), (2) we obtain the set of equations

for y and ψ:

k′AG
∂

∂x

(
∂y

∂x
− ψ

)
− ρA

∂2y

∂t2
+N

∂2y

∂x2
= 0 (4)

−ρJ ∂
2ψ

∂t2
+ k′AG

(
∂y

∂x
− ψ

)
+ EJ

∂2ψ

∂x2
= 0 (5)

Eliminating ψ from (4)

∂ψ

∂x
=

1

k′AG

(
k′AG

∂2y

∂x2
− ρA

∂2y

∂t2
+N

∂2y

∂x2

)
(6)

we come to the equation for deflection y(x, t) (in the case of constant force N):

EJ
∂4y

∂x4
− ρJ

(
1 +

E

k′G

)
∂4y

∂x2∂t2
+
ρ2J

k′G

∂4y

∂t4
+ ρA

∂2y

∂t2

(7)

+N

(
EJ

k′AG

∂4y

∂x4
− ρJ

k′AG

∂4y

∂x2∂t2
− ∂2y

∂x2

)
= 0

We introduce the dimensionless variables and parameters [23, 24]:

ξ =
x

r0
τ =

c

r0
t Y =

y

r0
c2 =

E

ρ
r20 =

J

A
χ =

E

k′G
N̄ =

N

EA
(8)

where c is the sound speed in the material of the beam, r0 is the radius of inertia of
the cross–section, χ is the shear deformability parameter (for the Euler–Bernoulli
and Rayleigh beam models one has χ = 0, which corresponds to an infinitely large
shear stiffness). In these parameters equation (7) takes the form:

∂4Y

∂ξ4
− (1 + χ)

∂4Y

∂ξ2∂τ2
+ χ

∂4Y

∂τ4
+
∂2Y

∂τ2
+ N̄

(
χ
∂4Y

∂ξ4
− χ

∂4Y

∂ξ2∂τ2
− ∂2Y

∂ξ2

)
= 0 (9)

The equation for the cross-sectional angle ψ in dimensionless parameters (8) is as
follows:

∂ψ

∂ξ
=

(
∂2Y

∂ξ2
− χ

∂2Y

∂τ2
+ χN̄

∂2Y

∂ξ2

)
(10)

For the formulation of boundary conditions is also advisable to have an uncoupled
equation for angle ψ. Excluding y from equations (4), (5) and passing to the
dimensionless parameters, we obtain the equation

∂4ψ

∂ξ4
− (1 + χ)

∂4ψ

∂τ2∂ξ2
+ χ

∂4ψ

∂τ4
+
∂2ψ

∂τ2
− N̄

(
∂2ψ

∂ξ2
+ χ

∂4ψ

∂τ2∂ξ2
− χ

∂4ψ

∂ξ4

)
= 0 (11)
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Equation (11) is similar to equation (17) for the total deflection (but the boundary
conditions for them are different). Equation (6) in dimensionless variables is as
follows:

∂ψ

∂ξ
=

(
∂2Y

∂ξ2
− χ

∂2Y

∂τ2
+ χN̄

∂2Y

∂ξ2

)
(12)

In the case of rotating beam with end mass the longitudinal tensile force is N =
mΩ2l (we assume that the end mass is large in comparison with mass of the beam
and neglect the centrifugal forces of the beam itself). Dimensionless axial force N̄
is then equal to

N̄ =
mΩ2l

E A
(13)

2.1. Boundary conditions

Formulation of boundary conditions in TB differs from E–B model. At the clamped
end ξ = 0 boundary conditions are

Y (ξ = 0) = 0, ψ(x = 0) = 0 (14)

At the free end x = l (ξ = L/R) the bending moment (3) is equal to the moment
of inertia forces for the end mass M i = −Idε and it is directed oppositely (due
to usually assumed sign rule for the moment, ε is the angular acceleration of the
mass). We obtain the following boundary condition for the bending moment:

−EJ ∂ψ
∂x

∣∣∣∣
x=l

= Id
∂2ψ

∂t2

∣∣∣∣
x=l

which in dimensionless parameters (8) takes the form

∂ψ

∂ξ

∣∣∣∣
ξ=l/r0

= −I∗d
∂2ψ

∂τ2

∣∣∣∣
ξ=l/r0

(
I∗d =

Id
rρ0J

)
(15)

The second boundary condition at x = l is stated for the transverse force. In
case of oscillations of the beam in the plane passing through the rotation axis
(perpendicular to the axis of the undeformed beam), the direction of the longitudinal
force N remains unchanged, i. e it is parallel to the axis of the beam (Fig. 2).

Figure 2 To formulation of boundary conditions
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The transverse force at the edge is equal to the projection of the longitudinal forces
N on the plane perpendicular to the bent axis: Q = −N sinφ. This force is added
to the projection on the same plane of relative inertia force −mÿ(l) cosφ. With
account of (3), we obtain nonlinear boundary condition

k′AG

(
∂y

∂x
− ψ

)
= −mÿ(l) cosφ−N sinφ

which after linearization takes the form:

k′AG

(
∂y

∂x
− ψ

)
= −m∂2y

∂t2
−N

∂y

∂x

where x = l
This condition in dimensionless parameters (8) takes the form:

∂Y

∂ξ
(1 + χN̄) +

χ

µ

l

r0

∂2Y

∂τ2
= ψ at ξ = l/r0 (16)

where the parameter of weight ratio is introduced:

µ =
ρA l

m
(17)

3. Solution for the free oscillation problem

Assuming the total dynamic deflection and angle ψ in the form

Y (ξ, τ) = F (ξ)eiω0τ ψ(ξ, τ) = eiω0τΨ(ξ) (18)

and substituting (18) into (9) we obtain the ordinary differential equation(
1 + N̄χ

)
F IV +

(
(1 + χ)ω2

0 + N̄χω2
0 − N̄

)
F II +

(
ω4
0χ− ω2

0

)
F = 0 (19)

and similar equation for Ψ(ξ). The characteristic equation(
1 + N̄χ

)
k4 +

(
(1 + χ)ω2

0 + N̄χω2
0 − N̄

)
k2 +

(
ω4
0χ− ω2

0

)
= 0 (20)

has roots

k21,2 =
−
(
(1 + χ)ω2

0 + N̄χω2
0 − N̄

)
±
√
D

2
(
1 + N̄χ

) , (21)

where
D =

(
(1 + χ)ω2

0 + N̄χω2
0 − N̄

)2
+ 4ω2

0

(
1 + N̄χ

) (
1− ω2

0χ
)

The discriminant can also be written in the form D =
(
(1− χ)ω2

0 + N̄χω2
0 − N̄

)2
+

4ω2
0 , whence follows that always D > 0 and that

√
D >

∣∣(1− χ)ω2
0 + N̄χω2

0 − N̄
∣∣.

To define the sign of the numerator in (20), consider the expression:

D −
(
(1 + χ)ω2

0 + N̄χω2
0 − N̄

)2
= 4ω2

0

(
1 + N̄χ

) (
1− χω2

0

)
(22)

This expression is positive for χω2
0 < 1 (first, or ”low frequency” case) and negative

for χω2
0 > 1 (second, ”high frequency” case).
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In the first case (χω2
0 < 1) equation (20) has two real and two imaginary roots,

± k1, ±i k∗2, where

k21 =

√
D −

[
(1 + χ)ω2

0 − N̄(1− χω2
0)
]

2
(
1 + N̄χ

) ,

(23)

k2∗2 ≡ −k22 =

[
(1 + χ)ω2

0 − N̄(1− χω2
0)
]
+
√
D

2
(
1 + N̄χ

)
Then the general solution of (19) and of similar equation for Ψ(ξ) can be written
as:

F (ξ) = C1shk1ξ + C2chk1ξ + C3 sin k∗2ξ + C4 cos k∗2ξ

(24)

Ψ(ξ) = D1shk1ξ +D2chk1ξ +D3 sin k∗2ξ +D4 cos k∗2ξ

and the general solutions of equations (9) and (11) have the form

Y (ξ, τ) = eiω0τ [C1shk1ξ + C2chk1ξ + C3 sin k∗2ξ + C4 cos k∗2ξ]

(25)

ψ(ξ, τ) = eiω0τ [D1shk1ξ +D2chk1ξ +D3 sin k∗2ξ +D4 cos k∗2ξ]

In the second case (χω2
0 > 1), equation (20) has four imaginary roots ± ik∗1, ±i k∗2,

where

k2∗1 ≡ −k21 =

[
(1 + χ)ω2

0 + N̄(χω2
0 − 1)

]
−

√
D

2
(
1 + N̄χ

) (26)

Then the general solutions of equation (19) and of similar equation for Ψ(ξ) are:

F (ξ) = C1 sin k∗1ξ + C2 cos k∗1ξ + C3 sin k∗2ξ + C4 cos k∗2ξ

(27)

Ψ(ξ) = D1 sin k∗1ξ +D2 cos k∗1ξ +D3 sin k∗2ξ +D4 cos k∗2ξ

and solutions of equations (9) and (11) are:

Y (ξ, τ) = eiω0τ [C1 sin k∗1ξ + C2 cos k∗1ξ + C3 sin k∗2ξ + C4 cos k∗2ξ]

(28)

ψ(ξ, τ) = eiω0τ [D1 sin k∗1ξ +D2 cos k∗1ξ +D3 sin k∗2ξ +D4 cos k∗2ξ]

Eight constants Ck and Dk are linked by four conditions that are derived from the
equation (12). Substituting into (12) the obtained solutions forY (ξ, τ) and Ψ(ξ, τ),
we obtain the following relations.

Case χω2
0 < 1 :

D1 = ν1C2, D2 = ν1C1, D3 = ν2C4, D4 = −ν2C3 (29)

Here

ν1 =

(
1 + χN̄

)
k21 + χω2

0

k1
, ν2 =

−
(
1 + χN̄

)
k2∗2 + χω2

0

k∗2
(30)
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Case ω2
0χ > 1

D1 = ν3C2, D2 = −ν3C1, D3 = ν2C4, D4 = −ν2C3 (31)

where

ν3 =
−
(
1 + χN̄

)
k2∗1 + χω2

0

k∗1
(32)

4. Frequency equation

Let us substitute the general solutions for Y and ψ (25) or (28) into boundary
conditions (14), (15), (16), with account for relations between Ci and Di (29) or
(31). For the case χω2

0 < 1 conditions (14) give

C4 = −C2 D4 = −D2 (33)

Then in view of (29) one has

D3

ν2
= −D1

ν1
, ν2C3 = ν1C1

These relations allow to exclude two arbitrary constants from the general solution
and express it via the constants C1, C2:

Y = eiω0τ [C1g1(ξ) + C2g2(ξ)]

(34)

ψ = eiω0τν1 [C1g2(ξ) + C2g3(ξ)]

where the following functions are introduced:

g1(ξ) = shk1ξ +
ν1
ν2

sin k∗2ξ

g2(ξ) = chk1ξ − cos k∗2ξ (35)

g3(ξ) = shk1ξ −
ν2
ν1

sin k∗2ξ

The boundary condition for the bending moment (15) leads to equation

C1

[
g5 (l/r0)− I∗dω

2
0g2 (l/r0)

]
+ C2

[
g4 (l/r0)− I∗dω

2
0g3 (l/r0)

]
= 0 (36)

where

g4(ξ) ≡
∂g3
∂ξ

= k1chk1ξ −
ν2
ν1
k∗2 cos k∗2ξ

(37)

g5(ξ) ≡
∂g2
∂ξ

= k1shk1ξ + k∗2 sin k∗2ξ

The boundary condition (16) leads to equation

C1

[
g6

(
l

r0

)
(1 + χN̄)− ν1g2

(
l

r0

)
− χ

µ

l

r0
ω2
0g1

(
l

r0

)]
h11

(38)

+C2

[
g5

(
l

r0

)
(1 + χN̄)− ν1g3

(
l

r0

)
− χ

µ

l

r0
ω2
0g2

(
l

r0

)]
= 0
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where

g6(ξ) =
∂g1
∂ξ

= k1chk1ξ +
ν1
ν2
k∗2 cos k∗2ξ (39)

Two homogeneous linear equations (36) and (38) give the frequency equation∣∣∣∣ h11 h12
h21 h22

∣∣∣∣ = 0 (40)

where

h11 = g5 (l/r0)− I∗dω
2
0g2 (l/r0)

h21 = g6

(
l

r0

)
(1 + χN̄)− ν1g2

(
l

r0

)
− χ

µ

l

r0
ω2
0g1

(
l

r0

)
(41)

h12 = g4 (l/r0)− I∗dω
2
0g3 (l/r0)

h22 = g5

(
l

r0

)
(1 + χN̄)− ν1g3

(
l

r0

)
− χ

µ

l

r0
ω2
0g2

(
l

r0

)
5. Results of numerical analysis

Equation (40) was solved numerically in the Maple–10 package. All quantities in the
frequency equation (40) can be expressed in the following dimensionless parameters:
parameter of relative length of the beam l/r0, the mass ratio parameter µ (17),
the shear deformability parameter χ (8), the dimensionless moment of inertia of

the mass I∗d (16), the relative angular velocity Ω̄ = Ω
ω0∗

(here ω=
0∗

√
3EJ
ml3 ). The

parameter of the longitudinal force N̄ is expressed through the parameters l/r0

and Ω̄: N̄ = Ω̄2 3r20
l2 . These parameters determine the natural frequency of the

normalized beam in time τ (8) ω̄ = ω0

ω
(τ)
0∗

, where ω
(τ)
0∗ =

√
3µ

(
r0
l

)2
.

Testing the program was carried out by comparing results of the calculations
for the case χ = 0 with the earlier calculations according to the classical Euler–
Bernoulli model [25]. As was noted above, for χ = 0 the model Timoshenko reduces
to Rayleigh model, which usually gives results that do not differ practically from
the Euler–Bernoulli model (except for very short beams). In all our calculations for
χ = 0 the results almost identical to the data [25].

Then the dependencies of natural frequencies and natural modes on dimension-
less parameters in a wide ranges were studied using the package Maple–13. The
main attention was paid to analysis of the influence of the shear deformability on
different levels of angular velocity parameter Ω̄. For the shear deformability pa-
rameter χ we assumed the following values: χ = 0; χ = 3 (which, as can be seen
from (8), approximately corresponds to isotropic material for many typical cross–
sections of beam), and χ = 10, χ = 20 (increased shear deformability, for example,
a composite material, thin–walled beams, etc.). Parameter Ω̄ was assumed in the
range from 0 to 2 (the value Ω̄ = 1 corresponds to the angular velocity equaled to
the natural cyclic frequency of beam, with account only the end mass). For the
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relative length l/r0 there were taken values l/r0= 20, 10 and 5; for the mass ratio
parameter µ - values 0.1, 0.5 and 1.0.

To simplify the analysis we first neglected with the moment of inertia forces of
the end mass, and then the effect of the parameter I∗d was studied separately.

Results for beams with neglecting the moment of inertia of the end mass (I∗d =
0). There were constructed plots of the normalized first eigenfrequency ω̄0 via the
normalized angular velocity Ω̄ at µ = 1 for three χ values: χ = 0, 3 and 10 at
l/r0 = 20, 10, and 5 (Fig. 3, a− c, respectively).

Figure 3 Normalized first natural frequency via the normalized angular velocity for three values
of the shear parameter χ= 0 , 3, 10: a) l/r0 = 20; b) l/r0 = 10; c) l/r0 = 5 (µ = 1, I∗d=0)

The shear deformability leads to a decrease of the natural frequency of oscillation
ω̄, and the effect of rotation on ω̄ in these parameters is approximately the same
for different values of the parameter χ (curves ω̄ − Ω̄ for different χ are almost
equidistant) . As might be expected, for a relatively long beam (l/r0 = 20) influence
of χ on ω̄ is weak, for short beams this effect becomes significant (at l/r0 = 5
reduction of ω̄ for χ = 10 in comparison to χ = 0 is about 30%).

It is interesting to compare the first natural modes and their flexural components
for different values of the parameters χ and Ω̄, represented for l/r0 = 10 in Fig.
4. For non–rotating beams the total deflection is almost pure bending (the shear
component is small); with increasing angular velocity the shear deflection increases,
and the portion of the bending deflection at the total deflection decreases. Even
more pronounced increase of the shear component of deflection is caused by the
increase of the parameter χ from 3 to 10 (Fig. 4, a, b).

With rising angular velocity and shear deformability the eigenmode profile rec-
tified, and the turn angle at the initial section becomes markedly different from
zero.

There were also performed calculations of the second natural frequencies and
the corresponding natural modes. Dependencies of the second natural frequency on
the angular velocity of rotation are shown in Fig. 5 for l/r0=10; µ = 1, J∗

d=0 at
three χ-values, along with corresponding curves for the first natural frequency (in
this scale the curves for different χ almost merge).
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Figure 4 The first natural modes and their flexural components for the beam l/r0=10, µ = 1, ,
I∗d=0 Ω̄ = 2 at twoχ- values: χ=3 (a ) and χ=10 (b)

The shear deformability affects the higher natural frequencies substantially stronger
than the first frequency. Neglecting this effect for l/r0=10 leads to overestimation
of the natural frequency approximately by 20%.

The shear deformability relatively weakly change the second natural modes (as
well as the first one), but has a significant effect on the flexural – shear deflections
ratio. These modes for non-rotating beams are depicted in Fig. 6, a, b (l/r0=10;
µ = 1, J∗

d=0, Ω̄ = 0).

Whereas the first natural mode at χ= 3 almost wholly is a flexural one (Fig. 4,
a), in the second mode at a given l/r0 the flexural deflection is about half of the
total deflection.

The rotation has a relatively weaker effect on higher natural modes and the
different deflection components ratio (Fig. 7, a, b, for the same beam (l/r0=10;
µ = 1, J∗

d=0), but at χ=10; (a) Ω̄ = 0; (b) Ω̄ = 2). In this case the increased
shear deformability results in prevailing shear component of the total deflection.

6. Effect of the moment of inertia of the end mass.

Results of calculations based on the mass moment of inertia at the end of (I∗d ̸= 0)
shown in Fig. 8–10. In all calculations was assumed l/r0=10; µ = 1; the first and
second natural frequencies and modes were considered. Fig. 8 illustrates the first
and second natural frequencies of the angular speed for three values χ=0; 3 and 10
at I∗d=50 and I∗d=200 (Figs. 8, a and b, respectively).
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Figure 5 The first and second normalized eigenfrequency ω̄0 via the angular velocity of rotation
at l/r0=10; µ = 1, J∗

d=0, for different χ-values (χ=0; 3 and 10)

Figure 6 The second natural mode of non–rotating beam l/r0=10; µ = 1, J∗
d=0: a) χ = 0,

b) χ = 3
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Figure 7 The second natural modes of the beam with high shear deformability (χ=10 (a) Ω̄ = 0;
(b) Ω̄ = 2 (l/r0=10; µ = 1, I∗d=0)

Figure 8 Normalized first and second natural frequency ω̄ via the normalized angular velocity for
three χvalues at I∗d=50 (a) and I∗d=200(b); (l/r0=10; µ = 1)
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Figure 9 The normalized frequency ω̄ via the normalized moment of inertia of the end mass at
l/r0=10; µ = 1, with different value; (a) Ω̄ = 0, (b) the angular velocity Ω̄ = 1

Figure 10 The first and second natural shapes and the flexural components for a non–rotating
(a, b) and rotating (Ω̄ = 1) beam (c, d) with I∗d=100 (l/r0=10, µ = 1, χ=10)
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Fig. 9 shows the dependence of the normalized frequency ω̄ on normalized
moment of inertia of the end mass at different values χ for a nonrotating beams (a)
and at angular velocity Ω̄ = 1 (b).

The first and second eigenmodes and their flexural components at χ=10 are
shown in Fig. 10 for non–rotating (a, b) and rotating (Ω̄ = 1) beam (c, d) with
a normalized moment of inertia end mass I∗d=100.

Comparing the results presented in Fig. 8–10 with those given above for the
case I∗d = 0, we can draw the conclusion that the moment of inertia of the end mass
lowers the natural frequencies, especially the higher ones, and markedly changes the
dependencies of natural frequencies on the angular velocity.

7. Conclusions

There has been conducted analysis of natural frequencies and natural modes of
cantilever beam with the end mass, rotating about an axis perpendicular to the
beam axis, and oscillating in the plane passing through the axis of rotation, within
framework of Timoshenko beam model. The peculiarity of the analysis is the
use of dimensionless equations of motion which depend only on two dimensionless
parameters – a shear deformability parameter and normalized angular velocity of
rotation. In the numerical experiment the influence of the angular velocity of rota-
tion on the first and second natural frequencies and natural modes has been studied,
as well as effects of relative length, shear deformability, relative end mass and the
dimensionless moment of inertia of the end mass. For the first time, the ratio of
bending and shear components in the natural modes has been studied for different
combinations of dimensionless parameters.
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