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The paper focuses on the comparison of identification of the mathematical model of
an underwater robot by making use of fuzzy logic systems and neural networks. The
solution to the problem was carried out through simulations.
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1. Introduction

It is hard to take all phenomena into consideration when modelling manipulators
or robots, therefore the corresponding mathematical models are not known exactly.
Correct analysis of dynamics of such complex systems requires identification of dy-
namical equations of motion [4, 8]. The identification of mathematical models with
the use of neural networks and fuzzy logic systems [1, 5] enables one to recognize
unknown parameters and adjust the mathematical model to the real object.

2. Identification using fuzzy logic

In the design of fuzzy sets, a the most important is specification of the consideration
set. In the case of an ambiguous term ”high temperature”, another value will be
considered too high, if we accept the temperature interval [0÷10oC], and other, if
we accept the temperature interval [0÷1000oC]. The consideration domain or the
set of action will be marked with the X letter. We must remember that X is a
fuzzy set.



136 Giergiel, J., Kurc, K. and Szybicki, D.

The definition of the fuzzy set [12] was formulated as follows:
A fuzzy set in non–empty space X, written down as A ⊆ X, is called the set of

pairs
A = {(x, µA(x));x ∈ X} (1)

where:
µA : X → [0, 1] (2)

is a membership function of the A fuzzy set. This function assigns for every element
x ∈ X some affiliation degree to the fuzzy set A. Three cases are distinuished: full
affiliation of the element x to the fuzzy set A, when µA(x) = 1, no affiliation of the
element x to the fuzzy set A, when µA(x) = 0, and partial affiliation to the fuzzy
set A of the element x, when 0 < µA(x) < 1. There are many standard forms of the
membership function, which have been described in literature, e.g. [12], however the
most common are: gauss functions, triangular functions and trapezoidal functions
[3, 11].

In systems with fuzzy logic the rules are symbolic ”IF–THEN”, quality vari-
ables are described with linguistic variables and there are fuzzy operators like
”AND”, so the sample rule can be written as follows

IF x1 is small AND x2 is large THEN y is average (3)

A mathematical model [6, 7, 9, 10] was adopted (Fig. 1b, 1c) for the description
of the movement of the underwater robot (Fig. 1a).

Figure 1 a) Underwater robot, b), c) model of the robot

The dynamic equations of motion is{
Mn1 = a4α̈1 + a2α̇

2
1 + a3α̈2 + a1α̇

2
2 − a5

Mn2 = b4α̈1 + b2α̇
2
1 + b3α̈2 + b1α̇

2
2 − b5

(4)
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where:
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cos (β) (mR + 2m) (1− s1) sin (β)
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where:
r– the radius of the drive wheel replacement,
H – distance between the axes of the tracks,
Pu – pulling force,
m – track mass,
mR – frame mass,
IR, Iz, Ix – inertia moment for the robot frame,
β – angle of the robot frame (Fig. 8a),
γ – angle of driveway (Fig. 8a),
Wt – the force of resistance of the rolling track,
Fw – hydrostatic force,
FD – hydrostatic resistance force,
α1 – angle of rotation of wheel 1,
α2 – angle of rotation of wheel 2,
s1 – slip for wheel 1,
s2 – slip for wheel 2.
Equation (4) were written down in state space:

α̇ = Aα+B [f (α, β, γ) +G (α, β, γ)u(t)] (5)

Because functions f (α, β, γ) and G (α, β, γ) don’t have the linear form with regard
to parameters, there are some inaccuracies in the modelling. The identification
system takes the form

˙̂α = Aα̂+B
[
f̂
(
α, β̂, γ̂

)
+ Ĝ

(
α, β̂, γ̂

)
u
]
+Kα̃ (6)

where vector α̂ is an estimation of the state vector α, f̂
(
α, β̂, γ̂

)
, Ĝ

(
α, β̂, γ̂

)
are

estimations of the non-linear functions in equation (5). Accepting the error of the
estimation of the state vector in the form

α̃ = α− α̂ (7)

and subtraction equation (6) from equation (5) a description of the identification
system in the error space is acquired

˙̃α = AH α̃+B
[
f̃
(
α, β, γ, β̂, γ̂

)
+ G̃

(
α, β, γ, β̂, γ̂

)
u
]

(8)
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where: AH = A − K and the matrix K is that the characteristic equation of the
AH matrix is strictly stable.

3. Identification using neural networks

Another kind of the solution to the task of identification is an application of artificial
neural networks.

Adding and subtracting the expression Amα from equation (5) where Am is a
stable design matrix [8], we receive

α̇ = Amα+ (A−Am)α+B [f (α, β, γ) +G (α, β, γ)u] (9)

Equation (8) defines the series–parallel structure of the identification system which
is in the form

˙̂α = Amα̂+ (A−Am)α+B
[
f̂
(
α, β̂, γ̂

)
+ Ĝ

(
α, β̂, γ̂

)
u
]

(10)

where:
α̂ is the estimator of the vector of the state α, f̂

(
α, β̂, γ̂

)
and Ĝ

(
α, β̂, γ̂

)
are

estimators of non–linear functions from equation (9).
The error of the estimation of the state is given in the form (7).
Substracting equation (10) subtract from equation (9), a description of the task

of identification is received in the error space

˙̃α = Amα̃+B
[
f̃
(
α, β, γ, β̂, γ̂

)
+ G̃

(
α, β, γ, β̂, γ̂

)
u
]

(11)

where:

Amα̃ = Amα−Amα̂ (12)

f̃
(
α, β, γ, β̂, γ̂

)
= f (α, β, γ)− f̂

(
α, β̂, γ̂

)
(13)

G̃
(
α, β, γ, β̂, γ̂

)
= G (α, β, γ)− Ĝ

(
α, β̂, γ̂

)
(14)

To determine the function f̂
(
α, β̂, γ̂

)
and Ĝ

(
α, β̂, γ̂

)
neural networks have been

applied.
Since the functions f (α, β, γ) and G (α, β, γ) are supposed to be approximated

by neural networks, then

f (α, β, γ) = WT
f Sf (α, β, γ) + εf (α, β, γ) (15)

G (α, β, γ) = WT
GSG (α, β, γ) + εG (α, β, γ) (16)

where:
εf (α, β, γ) and εG (α, β, γ) – are the inaccuracies of approximation of the func-

tion f (α, β, γ) and G (α, β, γ) through neural networks,
Wf and WG – matrices of weights of neural connections,
Sf (α, β, γ) and SG (α, β, γ) – vectors of base functions.
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These networks have the structure of the network with the radial functional
extension in form of Gauss’ function

Sj (x) = exp
(
−β ∥x− cj∥2

)
(17)

where cj is j–th centre.
A general structure of the system is shown in (Fig. 2):

Figure 2 Structure of radial networks approximating functions f̂
(
α, β̂, γ̂

)
and Ĝ

(
α, β̂, γ̂

)

Setting the estimations of functions in equation (13) and (14) in the form

f̂
(
α, β̂, γ̂

)
= ŴT

f Sf

(
α, β̂, γ̂

)
(18)

Ĝ
(
α, β̂, γ̂

)
= ŴT

GSG

(
α, β̂, γ̂

)
(19)

Formulas (13) and (14) are written in the form

f̃
(
α, β, γ, β̂, γ̂

)
= W̃T

f Sf

(
α, β, γ, β̂, γ̂

)
+ εf (α, β, γ) (20)

G̃
(
α, β, γ, β̂, γ̂

)
= W̃T

GSG

(
α, β, γ, β̂, γ̂

)
+ εG (α, β, γ) (21)

where:
εf (α, β, γ) and εG (α, β, γ) – are the errors of approximation of the network,

W̃f and W̃G – errors of the estimation of weights of the network.
Then equation (11) will be in the form

˙̃α = Amα̃+B
[
W̃T

f Sf

(
α, β, γ, β̂, γ̂

)
+ W̃T

GS∆

(
α, β, γ, β̂, γ̂

)]
+B [Rf +RG] (22)

where:

Rf = εf (α, β, γ) , RG = εG (α, β, γ)u, S∆

(
α, β, γ, β̂, γ̂

)
= u⊗SG

(
α, β, γ, β̂, γ̂

)
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The stability of the system was checked according to the Lyapunov stability crite-
rion. It is known that the dynamic system will be stable if a Lyapunov function
exists for it [4, 8, 13, 15].

A function was assumed in the form:

V =
1

2
α̃TPα̃+

1

2
trW̃T

f F−1
f W̃f +

1

2
trW̃T

GF−1
G W̃G (23)

If this function is to be the Lyapunov function, its derivative has to be negative

V̇ = −α̃TQα̃+ α̃TPB


W̃T

f Sf

(
α, β, γ, β̂, γ̂

)
+

+W̃T
GS∆

(
α, β, γ, β̂, γ̂

)
+

+Rf +RG

 (24)

+trW̃T
f F−1

f
˙̃Wf + trW̃T

GF−1
G

˙̃WG

The training of the neural network weights has been carried out according to the
formula

˙̃Wf = −FfSf

(
α, β, γ, β̂, γ̂

)
α̃TPB (25)

˙̃WG = −FGS∆

(
α, β, γ, β̂, γ̂

)
α̃TPB (26)

From the matrix form of the Lyapunov equation

ETP + PE = −Q = −I (27)

a Hertmitian matrix was determined as

P =

[
p1 p2
p2 p3

]
(28)

by solving the equation[
e11 e21
e12 e22

] [
p1 p2
p2 p3

]
+

[
p1 p2
p2 p3

] [
e11 e12
e21 e22

]
=

[
−1 0
0 −1

]
(29)

A denotation has been assumed
h = PB (30)

where

h =

[
h1

h2

]
(31)

Finally, the weight training algorithm for (25) and (26) has the form

˙̂
Wf = FfSf

(
α, β, γ, β̂, γ̂

)
α̃Th (32)

˙̂
WG = FGSG

(
α, β, γ, β̂, γ̂

)
α̃Th (33)

The identification of the mathematical model of the underwater robot was carried
out according to this procedure.
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4. The simulation using fuzzy logic

The verification was carried out on a prototype of the underwater robot. We may
expect that the estimated model will be different from the mathematical model [8].

To determine functions f̂
(
α, β̂, γ̂

)
, Ĝ

(
α, β̂, γ̂

)
fuzzy logic systems were created

in the application MatlabTM (Fig. 3), which makes it possible to create models of
fuzzy logic ( fuzzy logic toolbox) [2, 14].

Figure 3 Model of fuzzy logic approximated non–linear functions

The task of the fuzzy logic system is to determine functions f̂
(
α, β̂, γ̂

)
,

Ĝ
(
α, β̂, γ̂

)
in such a way, that an error α̃ between the state vector α of the com-

puting model and the estimated state vector α̂ is the smallest. Takagi–Sugeno’s
model was applied in the designing phase [2, 12, 14]. The fuzzification block trans-
formsm the input space in form X = [α̇1a, α̇1b] × [α̇2a, α̇2b] ⊂ Rn into fuzzy set
A ∈ X characterised by the membership function µA(x) : X → [0, 1], which assigns
a degree of affiliation into fuzzy sets. In (Fig. 4) the membership functions are
presented in the form of Gauss’ function (gaussmf) according to the input range:
α̇1 ∈ [0, 100], α̇2 ∈ [0, 10].
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Figure 4 Functions of affiliation and intervals of variability

The base of rules for the model description was accepted as in (Fig. 5). Three
membership functions were accepted for the inputs of the fuzzy system and 9 rules
of inferring were created. A principle was offered: every rule from one input with
every rule of the other input, since the information about each output from the
fuzzy systems is missing.
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Figure 5 Base of rules for the accepted set

Figure 6 Exit of the fuzzy logic system
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The set A was accepted on the input with T–norm [3] of the minimum type

µAj
1×...×Aj

n
(x) = min

[
µAj

1
, ..., µAj

n

]
(34)

On the output of the Takagi-Sugeno model presented in (Fig. 6) a signal was
received

y (x) =

M∑
j=1

ȳjτj

M∑
j=1

τj

(35)

where:

τj =
n∏

i=1

µAj
i
(xi) (36)

is the ignition level of the j–rule.

Figure 7 Structure of identification with fuzzy logic

The described fuzzy logic systems were applied for approximation of non–linear
functions and they were modeled in the form (Fig. 7).

Data it:
r = 0,02794 m;
H = 0,145 m;
L = 0,127 m;
n = 8;
i = 500/7;
η = 0,45;
Pu = 20 N;
m = 2,8 kg;
mR = 3 kg;
IR = 0,008854 kgm2;
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Iz = 0,000651 kgm2;
Ix = 0,000059 kgm2;
s1 = 0;
s2 = 0.
Fuzzy Logic sets f and G are responsible for approximation of non–linear func-

tion. All fuzzy sets use numerical information which explicitly connects the input
and output signals.

3D trajectory (Fig. 8a) and velocity of point C robot Vc (Fig. 8b, Fig. 1c)

Figure 8 a) 3D trajectory, b) velocity of point C robot

Figure 9 Results of identification: a) input signal, b) angular velocity on the shafts driving
motors, c) parameters estimator, d) errors estimator
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In the next stage, the parameter identification of the underwater robot was carried
out according to the structure (Fig. 7) designed in MatlabTM–Simulink software,
taking as the input function u(t) torque of the motors (Fig. 9a).

Moments on the motor shaft received from the inverse dynamics was taken as
an input function (Fig. 9a) and than fuzzy identification of underwater robot pa-
rameters was carried out according to the chapter 2. Estimated parameters are the
angular velocity (Fig. 9c) of the motor shaft, which were compared with the pa-
rameters obtained during simulation the inverse kinematics (Fig. 9b). Subtracting
them, the angle velocity estimation error were obtained as (7) (Fig. 9d). It can
be seen that maximum the estimation error for the angle velocity ˙̃α of the motor
shaft is 0,5% (Fig. 9d) compared to ˆ̇α (Fig. 9c). Obtained solutions of identifica-
tion fuzzy logic are limited, and the proposed procedure is enabling identification
of non–linear systems by applying fuzzy logic systems.

5. The simulation using neural networks

In the next stage identification of the robot parameters was done with the applica-
tion of neural networks according to the structure (Fig. 10) given for input function
u(t) torque of the motors (Fig. 11a).

Data it:
r = 0,02794 m;
H = 0,145 m;
L = 0,127 m;
n = 8;
i = 500/7; η = 0,45;
Pu = 20 N;
m = 2,8 kg;
mR = 3 kg;
IR = 0,008854 kgm2;
Iz = 0,000651 kgm2;
Ix = 0,000059 kgm2;
s1 = 0;
s2 = 0.
On the schema (Fig. 10) ”Neural network f” and ”Neural network G” are models

from the chapter 3.
Taking the moments of the motor shaft from the inverse dynamics as an input

function (Fig. 11a) the neural identification of the underwater robot parameters was
carried out in accordance with the procedure in chapter 3. Estimated parameters are
the angular velocity (Fig. 11c) of the motor shaft, were compared to the parameters
obtained during simulation the inverse kinematics (Fig. 11b). Subtracting them,
the angle velocity estimation error were obtained as (7) (Fig. 11d). It can be seen
that maximum the estimation error for the angle velocity ˙̃α of the motor shaft is
0,5% (Fig. 11d) compared to ˆ̇α (Fig. 9c). Obtained solutions are limited, and
the proposed procedure is enabling identification of non-linear systems by applying
neural networks.
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Figure 10 Structure of identification with neural networks

Figure 11 Results of identification. a) input signal, b) angular velocity on the shafts driving
motors, c) parameters estimator, d) errors estimator
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6. Summary

After carrying out the stages of identification with neural networks and with fuzzy
logic it is possible to assume that these methods can be successfully applied during
identification of dynamic motion equations, and actual parameters as well as for
monitoring dynamic load and detecting damage.

Since results are similar, there a question arise, which method shall we apply
during identification of non–linear systems? The answer is simple: system which is
more suitable for us or that we implement faster.

The work is a part of the research project N N501 054440
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