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The prime objective of the research is to investigate the influence of various structural
parameters like aspect ratio, boundary condition, size of cut-out etc. on the free vibration
frequencies of a thick rectangular plate. Plates being one the most common structural
elements has always enticed the interest of many researchers towards this problem. In
here a general first order shear deformation theory (FSDT) is used to analyse the free
vibration behaviour of rectangular isotropic plates. A finite element program has been
developed using 9 node isoparametric element. A number of numerical examples are
presented here. Two different sets of mass lumping scheme are considered to carry the
analysis using and without using rotary inertia. The definite advantage of this work over
other similar works done by using FEM pakages is its exceptional accuracy. At most the
error calculated for convergence study with published literature is 1%.

Keywords: Finite element method, FSDT, rectangular plate, rotary inertia, natural
frequency.

1. Introduction

Vibration is the mechanical phenomenon of oscillations of any system about an
equilibrium point. The frequency at which a system tends to oscillate when not
under any external force is its natural frequency. Vibration is generally undesirable
since it is waste of energy and creates noise. If the forced frequency (frequency of
the system at some applied force) is equal to the natural frequency of the system,
phenomenon of resonance occurs which increases the amplitude of the vibration.
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There are several instances like ”Galloping Gertie” which bear testimony to the
fact. Hence it often becomes a necessity to know the natural frequency of the
structure while designing.

Plate structures are one of the most common structural element. Its wide ap-
plicability has captured the attention of many a researchers. In fact the analysis of
plates first started way back in the 1800s. Euler [1] was responsible for solving free
vibrations of a flat plate using a mathematical approach for the first time. Then
it was the German physicist Chladni [2] who discovered the various modes of free
vibrations. Then later on the theory of elasticity was formulated. Navier [3] can be
considered as the originator of the modern theory of elasticity. Navier’s numerous
scientific activities included the solution of various plate problems. He was also
responsible for deriving the exact differential equation for rectangular plates with
flexural resistance. For the solution to certain boundary value problems Navier in-
troduced exact methods which transformed differential equations to algebraic equa-
tions. Poisson in 1829 [4] extended the use of governing plate equation to lateral
vibration of circular plates.

Many theories with different assumptions have been developed over the years
to accurately predict the response of plates. The earliest plate theory suggested
for the plates was the Kirchhoff plate theory or Classical Plate Theory (CPT). In
this theory the normal of the plane is assumed to be straight and normal in the
deformed configuration. The CPT can be applied to a fine degree of accuracy to
analyse the plates whose thickness is small by two orders of magnitude as compared
to the planar dimensions. Such an assumption neglects the transverse shear effects,
which have significant impact on the behaviour of thick plates. This limits the
usage of the theory for only thick plates. Mindlin refined the CPT by including the
transverse shear effects in his model and the theory when applied to thick plates
is called the First–order Shear Deformation Theory (FSDT). In this model, the
normal of the plate is assumed to be straight but no longer normal in the deformed
configuration. This assumption makes the transverse shear strains and stresses to
be constant in the thickness direction of the thick plate and thus requires the shear
correction factor. The shear correction factor is a dimensionless quantity, which
accounts for the difference between the constant state of shear strains and stresses
in the First-order Shear Deformation Theory and the actual distribution of shear
strains and stresses according to the elasticity theory.

In the late 1900s, the theory of finite elements was evolved which is the basis for
all the analysis on complex structures. However the analyses using finite elements
are now being carried out using comprehensive software which requires high CPU
resources to compute the results. A number of excellent comprehensive review and
bibliographical information by several researchers provide a valuable insight in this
area [5–13].

Yu [14] used the Gorman method to calculate the dynamic repose of cantilever
plates with attached point mass. Very recently bending and free vibration be-
haviour of laminated soft core skew sandwich plate with stiff laminate face sheets
was investigated using a recently developed C0 finite element (FE) model based
on higher order zigzag theory [15]. A new implementation of the ancient Chinese
method called the Max-Min Approach (MMA) and Homotopy Perturbation Method
(HPM) was presented by Bayat et al. [16] to obtain natural frequency and corre-
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sponding displacement of tapered beams. Amabili and Carra [17] experimentally
studied the large-amplitude forced vibrations of a stainless-steel thin rectangular
plate carrying different concentrated masses. Lorenzo [18] used the trigonometric
Ritz method for general vibration analysis of rectangular Kirchhoff plates. Mantari
et al. [19] performed bending and free vibration analysis of multilayered plates and
shells using higher order shear deformation theory.

The primary objective of the current paper is evaluate the effect of various pa-
rameters like thickness ratio, aspect ratio, boundary condition etc. on the frequency
of isotropic thick plates. Also many a times it is seen that central cutouts are present
in this plates to fulfill some design or aesthetic requirement. An attempt has been
to study the effect of increase in the central cutout on the natural frequencies. The
special feature of the formulation is that Rotary inertia is included in the consistent
mass matrix for the analysis.

2. Finite Element Formulation

A general first order shear deformation theory (FSDT) is developed to analyse the
free vibration behaviour of rectangular isotropic plates. For the analysis a finite
element program is developed using 9 node isoparametric element. The element is
capable of handling plate of any shape. This is possible by using a simple mapping
technique defined as

x =
9∑

r=1

Nrxr and y =
9∑

r=1

Nryr (1)

where (x, y) are the coordinates of any point within the element, (xr, yr) are the
coordinates of the rthnodal point and Nr is the corresponding interpolation function
of the element. In this element, Lagrangian interpolation function has been used
for Nr. Taking the bending rotations as independent field variables, the effect of
shear deformation may be expressed as{

ϕx

ϕy

}
=

{
θx − ∂w

∂x

θy − ∂w
∂y

}
where ϕx and ϕy are the average shear rotation over the entire shell thickness and
θx and θyare the total rotations in bending. The other independent field variable
is w, where w is the transverse displacement.

The interpolation functions used for the representation of element geometry,
in eqns (1) has been used to express the displacement field at a point within the
element in terms of nodal variables as

w =
9∑

r=1

Nrwr θx =
9∑

r=1

Nrθxr and θy =
9∑

r=1

Nrθyr (2)

The generalized stress–strain relationship with respect to its reference plane may
be expressed as

{σ} = [D]{ε} (3)
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where:
{σ} = [Mx My Mxy Qx Qy] (4)

{ε} =



−∂θx
∂x

−∂θy
∂y

−∂θx
∂x − ∂θy

∂y
∂w
∂x − θx
∂w
∂y − θy


(5)

[D] =


D11 D12 0 0 0
D21 D22 0 0 0
0 0 D33 0 0
0 0 0 D44 D45

0 0 0 D54 D55

 (6)

where:

D11 = D22 =
E

1− ν2

D12 = D21 = νD11

D33 =
E

2(1 + ν)

D44 = D55 =
Eh3

12(1− ν2)

D45 = D54 = νD44

With the help of eqns (2) and (5) the strain vector may be expressed in terms of
the nodal displacement vector {δ} as

ε =
9∑

r=1

[B]r [{δr}]e (7)

where [B] is the strain displacement matrix containing interpolation functions and
their derivatives.

Once the matrices [B] and [D] are obtained, the stiffness matrix of an element
[K]e can be easily derived with the help of virtual work method which may be
expressed as

[K] = t

1∫
−1

1∫
−1

[B]T [D][B]|J |dξdη (8)

where |J | is the determinant of the Jacobian matrix.
In the similar manner, the consistent mass matrix of an element can be derived

and it may be expressed as

[M ] = ρt

1∫
−1

1∫
−1

(
[Nw]

T [Nw] +
h2

12
[Nθx]

T [Nθx] +
h2

12
[Nθy]

T [Nθy]

)
|J |dξdη (9)
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The stiffness matrix and mass matrix are evaluated for all the elements and they
are assembled together to form the overall stiffness matrix [K0] and mass matrix
[M0]. Once [K0] and [M0] are obtained the equation of motion may be expressed
as

[K0] = ω2[M0] (10)

The boundary conditions used are:
Simply supported condition (denoted by S):
w = θx = 0 – at boundary line parallel to x–axis.
w = θy = 0 – at boundary line parallel to y–axis.
Clamped condition (denoted by C):

w = θx = θy = 0

Free boundary condition (denoted by F):

w ̸= 0 θx ̸= 0 θy ̸= 0

3. Results and discussions

3.1. Convergence study

The convergence and validation of the proposed finite element model are presented,
taking various examples from literature. The problem under investigation is ex-
plained and the numerical results of the considered problem are discussed in this
section. A thick square plate simply supported at all the edges is studied here for
dynamic response. The 1st eight modes are studied here. Several mesh sizes are
considered and convergence in calculated frequencies is observed. It is seen that the
solution converges and is within less than 1% error of published literature at mesh
size of 18× 18. Hence mesh size of 18× 18 is used throughout the paper.

Table 1 Convergence Study [SSSS Square plate, h/a = 0.1]

Modes
Source 1 2 3 4 5 6 7 8
RI
(8*8)

19.0646 45.4871 45.4871 69.7696 85.1083 85.1086 106.6288 106.6290

RI
(10*10)

19.0648 45.4845 45.4845 69.7842 85.0670 85.0670 106.6605 106.6609

RI
(12*12)

19.0649 45.4836 45.4835 69.7894 85.0522 85.0524 106.6722 106.6735

RI
(14*14)

19.0649 45.4832 45.4831 69.7916 85.0457 85.0462 106.6777 106.6792

RI
(16*16)

19.0650 45.4830 45.4835 69.7929 85.0434 85.0426 106.6805 106.6845

RI
(18*18)

19.0650 45.4829 45.4829 69.7936 85.0408 85.0414 106.6837 106.6850

RI
(20*20)

19.0650 45.4829 45.4829 69.7936 85.0401 85.0427 106.6839 106.6851

Mindlin
[20]

19.065 45.482 45.482 69.794 85.038 85.038 - -



86 Kalita, K. and Haldar, S.

3.2. Effect of rotary inertia

A literature survey revealed that in most cases rotary inertia is not considered
by researchers. Herein an attempt is made to observe the effect of rotary inertia
on the vibration characteristics of a thick square plate simply supported at all the
edges. Tab. 2 presents the comparison between values calculated by considering and
without considering rotary inertia. The published results are in excellent sync with
the present solution calculated by considering rotary inertia. The percent variation
in frequencies calculated using and without using rotary inertia are presented here.
It is seen that for higher mode numbers the variation in RI (rotary inertia) and
WRI (without rotary inertia) is higher. Hence for thick plates the inclusion of
rotary inertia in finite element formulation is very essential.

Table 2 Effect of Rotary inertia [SSSS Square plate, h/a = 0.1]

Source
Modes
1 2 3 4 5 6

RI (18*18) 19.065 45.483 45.483 69.794 85.041 85.041
WRI (18*18) 19.205 46.199 46.199 71.320 87.172 87.172
Mindlin [20] 19.065 45.482 45.482 69.794 85.038 85.038
% Variation (RI &WRI) 0.730 1.550 1.549 2.140 2.444 2.444

Figure 1 Rectangular plate with central cut–out

3.3. Effect of aspect ratio

Tab. 3 presents a study on the effect of aspect ratio on the free vibration frequency
of simply supported thick rectangular plates. It is seen that as aspect ratio of the
plates increases the natural frequency decreases. This is because with increase in
area the mass of the plate increases which decreases the frequency.
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Table 3 Effect of aspect ratio (b/a) [SSSS rectangular plate, h/a = 0.1]

Aspect Ratio b/a Modes
1 2 3 4 5 6

0.2 188.011 203.598 204.615 217.380 230.915 265.281
0.5 45.483 69.794 106.683 133.623 152.610 152.612
0.8 24.203 50.187 63.890 86.894 89.205 120.828
1 19.065 45.483 45.483 69.794 85.041 85.041
1.5 13.898 26.145 40.764 45.484 51.968 69.792
2 12.067 19.065 30.361 39.095 45.482 45.486
2.5 11.216 15.728 23.091 33.097 38.320 42.434
3 10.752 13.898 19.064 26.145 35.007 37.898
5 10.077 11.216 13.104 15.725 19.061 23.089
10 9.791 10.076 10.551 11.212 12.060 13.090

3.4. Effect of boundary condition

Tab. 4 presents the influence of boundary conditions on natural frequency a rectan-
gular plate with aspect ratio (b/a) 2 and thickness ratio (h/a) 0.1. Here ”S” means
simply supported, ”C” means clamped and ”F” means free. The obtained results
clearly show that frequency parameters increases if more constraints are included.
For example SSSS have lower frequency than SSCS due to clamping in two sides in
the later. This implies that higher constraints on the edges increases the flexural
rigidity of the plate and results in higher frequency response. In all these cases
results are presented by taking rotary inertia into account.

Table 4 Effect of boundary condition [b/a = 2, h/a = 0.1]

Boundary Modes
Condition 1 2 3 4 5 6
FFFC=FFCF 0.856 3.546 5.272 11.434 14.505 21.613
CFFF=FCFF 3.458 5.191 9.746 14.352 18.083 20.629
FSSS=SFSS 3.964 11.373 18.080 22.920 26.154 38.033
CFCF=FCFC 4.196 8.735 17.393 21.385 26.562 30.529
FFCC 5.394 8.533 14.542 19.234 25.688 27.763
SSFS=SSSF 10.087 14.315 22.529 34.684 37.116 41.236
SSSS 12.067 19.065 30.361 39.095 45.482 45.486
SSCS=SSSC 12.593 20.613 32.879 39.312 46.249 48.762
SSCC 13.272 22.388 35.586 39.560 47.102 52.158
SCSS=CSSS 16.564 22.388 32.679 46.743 47.106 52.149
CSCS=CSSC 16.955 23.724 35.027 46.922 50.269 52.818
SCCC=CSCC 17.467 25.282 37.575 47.131 53.395 53.734
CCFF 20.727 21.629 25.126 32.092 43.250 52.262
CCCF=CCFC 21.040 23.953 30.650 41.738 53.261 56.391
CCSS 22.112 26.668 35.647 49.114 54.652 59.210
CCCS=CCSC 22.404 27.792 37.807 52.154 54.805 59.796
CCCC 22.791 29.129 40.176 54.982 55.338 60.455
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Table 5. Effect of size of central cutout [SSSS rectangular plate, b/a=2, h/a=0.1].

Cut-out

Size (k * k)

Modes

1 2 3 4 5 6

0.1a*0.1b 11.683 19.019 30.071 38.232 45.109 45.140

0.2a*0.2b 11.177 18.711 30.424 32.625 43.800 44.216

0.3a*0.3b 11.025 18.168 25.839 31.154 42.097 44.437

0.4a*0.4b 11.385 17.858 21.887 30.643 39.273 48.062

0.5a*0.5b 12.399 18.245 20.266 29.195 37.560 48.797

0.6a*0.6b 9.943 18.581 18.964 28.510 33.865 46.547

0.7a*0.7b 11.662 22.076 26.212 33.203 42.128 44.568
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3.5. Effect of central cutout

Fig. 1 shows a rectangular plate with a central cutout. Tab. 5 presents the influence
of a central cutout on the frequency of a rectangular plate with aspect ratio (b/a) = 2
and thickness ratio (h/a) = 0.1. Fundamentally frequency is the square root of the
ratio of the stiffness and mass. One may argue that the presence of larger cutout
will mean larger decrease in the mass and hence the frequency should increase as
cutout size increases. However it is not always so. This is due to the fact that the
position and size of the cutout changes the mass as well as the flexural rigidity of
the plate.

4. Conclusion

The problem of free vibration in thick rectangular plates is discussed in detail. The
various parameters like aspect ratio, boundary condition, size of cutout and inclu-
sion of rotary inertia etc. are discussed here with the help of numerical examples.
The convergence study proves the accuracy of the formulation. An error of less
than 1% is seen with the published results. The concept regarding incorporation of
mass for rotary inertia is really elegant, which may be used in other elements. The
order of accuracy in the present analysis and the variety of parameters considered
clearly highlights the potential of the finite element formulation used here.
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