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Postbuckling of an Imperfect Plate Loaded in Compression
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The stability analysis of a plate loaded in compression is presented. The non–linear
FEM equations are derived from the minimum total potential energy principle. The
peculiarities of the effects of the initial imperfections are investigated using the user
computer code. Special attention is paid to the influence of imperfections on the post–
critical buckling mode. The FEM computer program using a 48 DOF element has been
used for analysis. FEM model consists of 4x4 finite elements. Full Newton-Raphson
procedure has been applied.
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1. Introduction

In the presented paper behaviour of rectangular plate loaded in compression has
been explained [1, 2]. The geometrically nonlinear theory represents a basis for
the reliable description of the postbuckling behaviour of the plate [3]. Influence
of initial imperfection on the load–displacement path is investigated. The result
of the numerical solution represents a lot of the load versus displacement paths.
Solution from the user code (created by authors) is compared with results gained
using ANSYS system.

2. Theory

Let us assume a rectangular plate simply supported along the edges (Fig. 1) with
the thickness t. The displacements of the point of the neutral surface are denoted
q = [u, v, w]

T
and the related load vector is p = [px, 0, 0]

T
.
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By formulation of the strains, non-linear terms have to be taken into account
[4]. Then it can be written as

ε = εm + εb, εm = εl + εn, (1)

where

εl = [u,x , v,y , u,y + v,x]
T
,

εn = 1
2

[
w2

,x , w2
,y , 2w,xw,y

]T
,

εb = −z · [w,xx , w,yy , 2w,xy]
T
, εb = −z · k,

the indexes denote the partial derivations and w represents the global displacement.

The initial displacements have been assumed as the out of plane displacements
only and so it yields

ε0 = ε0n + ε0b, (2)

where

ε0n = 1
2

[
w2

0,x , w2
0,y , 2w0,xw0,y

]T
,

ε0b = −z · k0 = −z · [w0,xx , w0,yy , 2w0,xy]
T

and w0 is the part related to the initial displacement.

Figure 1 Thin plate a) Notation of quantities, b) FEM model



Postbuckling of an Imperfect Plate Loaded in Compression 145

The linear elastic material has been assumed

σ = D · (ε− ε0), (3)

where

D = E
1−ν2

 1 ν 0
ν 1 0
0 0 1−ν

2


E, ν are the Young’s modulus and Poisson’s ratio.

The total potential energy can be expressed as

U = Ui + Ue =

∫
V

1

2
(ε− ε0)

T
σ dV −

∫
A

qTpdA. (4)

After modification Eq. (??) can be written as

U =

∫
A

1

2
(εm − ε0n)

T
tD (εm − ε0n) dA

(5)

+

∫
A

1

2
(k− k0)

T t3

12
D (k− k0) dA−

∫
A

qTp dA

where ε, k are strains and curvatures of the neutral surface, ε0, k0 are initial strains
and curvatures, q, p are displacements of the point of the neutral surface, related
load vector.

The system of conditional equations can be obtained from the condition of the
minimum of the increment of the total potential energy

δ∆U = 0. (6)

This system [5] can be written as

Kinc ∆α+ Fint − Fext −∆Fext = 0, (7)

where

Kinc =

[
KincD KincDS

KincSD KincS

]
is the incremental stiffness matrix

Fint =

{
FintD

FintS

}
is the vector of the internal forces

Fext =

{
FextD

FextS

}
is the vector of the external load of the plate

∆Fext =

{
∆FextD

∆FextS

}
is the increment of the external load of the plate

q = B · α =

[
BD

BS

] {
αD

αS

}
and ∆q = B ·∆α
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Index D means part related to the bending parameters, index S – part related to
the axial parameters, DS – part related to the bending – axial parameters, α is
vector of variational coefficients and ∆α is increment of variational coefficients.

In the case of the structure in equilibrium Fint − Fext = 0, one can do the
incremental step Kinc ∆α = ∆Fext ⇒ ∆α = K−1

inc ∆Fext and αi+1 = αi + ∆α.
The Newton-Raphson iteration can be arranged in the following way: supposing
that αidoes not represent the exact solution, the residua are Fi

int −Fi
ext = ri. The

corrected parameters are αi+1 = αi + ∆αi, where ∆αi = −K−1
inc r

i (ri – vector of
residuum).

The identity of the incremental stiffness matrix with the Jacobian of the system
of the nonlinear algebraic equation J ≡ Kinc has been used in analysis.

To be able to evaluate the different paths of the solution, the pivot term of the
Newton–Raphson iteration has to be changed during the solution.

3. Numerical Results

Illustrative examples of compressed steel plate from Fig. 1 are presented as load
– displacement paths for different amplitudes of initial geometrical imperfection.
From Figs. 2 and 4 it is obvious that two almost identical modes of initial im-
perfection at the beginning of the loading process offer two different solutions in
postbuckling mode. Due to the mode of the initial imperfection the nodal dis-
placements denoted wA and wC have been taken as the reference values (see Fig.
1a).

The aim of this paper was to try to give an answer to the problem of the threat
of collapse of the plate loaded in compression in the second mode of buckling.

Fig. 2 show the solution for the amplitudes of initial geometrical imperfection
α01 = 0.05mm and α02 = 0.33mm. One can see that the fundamental path is in
the postbuckling phase in 1st mode of buckling. The thick line in Fig. 2 represents
displacement of node A and the thin line represents displacement of node C. Shape
of the plate in buckling and in postbuckling is also displayed.

Stable and unstable paths are shown in Fig. 3 (the thick lines represent stable
load – displacement paths). For the stable path the incremental stiffness matrix
Kinc must be positively defined; all minors must be positive as well; and the incre-
mental stiffness matrix must be evaluated for the load as the pivotal term.

Increasing the effect of the 2nd mode in the shape of the initial displacement
(α01 = 0.05mm and α02 = 0.35mm) the postbuckling mode of the plate is 2nd

mode (Fig. 4).

Stable and unstable paths are shown in Fig. 5. Thick lines represent stable
load – displacement paths, thin lines represent unstable load – displacement paths.
Limit points are denoted with dots. Continuous lines represent displacement wA and
dashed lines represent displacement wC . It is obvious that in the post-buckling the
shape of buckling surface remains identical with the shape of the initial imperfection.

The FEM computer program using a 48 DOF element (4 nodes, 12 DOF at each
node) [6] has been used for analysis. FEM model consists of 4x4 finite elements (Fig.
1a). Full Newton–Raphson procedure, in which the stiffness matrix is updated at
every equilibrium iteration, has been applied.
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Obtained results were compared with results of the analysis using ANSYS, where
16x16 elements model was created (Fig. 1b). Element type SHELL143 (4 nodes, 6
DOF at each node) was used.

4. Summary

The influence of the value of the amplitude and the mode of the initial geometri-
cal imperfections on the postbuckling behaviour of the plate is presented. Finite
elements created for special purposes of thin plates stability analysis, enable high
accuracy and speed convergence of the solution at less density of meshing. The
possibility on an interactive affecting of the calculation within the user code makes
it possible to investigate all load – displacement paths of the problem. From the
comparison of results shown both in Figs 2 – 3 and in Figs 4 – 5 a good coincidence
of presented load–displacement paths is evident.

Figure 2 The postbuckling of the thin plate with initial displacement: w0 = 0.05 sin πx
a

sin πy
b

+0.33 sin 2πx
a

sin πy
b

, a) user code [4, 5], b) ANSYS system
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Figure 3 Stable and unstable load – displacement paths. Thin plate with initial displacement
w0 = 0.05 sin πx

a
sin πy

b
+0.33 sin 2πx

a
sin πy

b

Figure 4 The postbuckling of the thin plate with initial displacement: w0 = 0.05 sin πx
a

sin πy
b

+0.35 sin 2πx
a

sin πy
b

, a) user code [4, 5], b) ANSYS system
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Figure 5 Stable and unstable load – displacement paths. Thin plate with initial displacement
w0 = 0.05 sin πx

a
sin πy

b
+0.33 sin 2πx

a
sin πy

b

Capabilities of the user code in the analysis of post–bucking effect of thin plates
were presented. Using the presented user code provides and advantage of obtaining
all desired paths in the post–buckling and making their qualitative analysis. The
commercial software enables one to obtain the fundamental path only. Another ben-
efit of the user code (compared to the commercial software), is the simple detection
of critical points.

Objectives specified at the beginning were accomplished. The accuracy of the
results was verified by commercial computer program. For complex analysis of
postbuckling of an imperfect plate it should be used more convenient user code.
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