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The stability analysis of an imperfect plate subjected to the shear load is presented, a
specialized code based on FEM has been created. The nonlinear finite element method
equations are derived from the variational principle of minimum of total potential energy.
To obtain the nonlinear equilibrium paths, the Newton–Raphson iteration algorithm is
used. Corresponding levels of the total potential energy are defined. The peculiarities
of the effects of the initial imperfections are investigated. Special attention is paid to
the influence of imperfections on the post–critical buckling mode. Obtained results are
compared with those gained using ANSYS system.
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1. Introduction

Solving stability of the thin plate, it is often insufficient to determine the elastic
critical load from eigenvalue buckling analysis, i.e. the load, when perfect plate
starts buckling. It is necessary to include initial imperfections of real plate into
the solution and determine limit load level more accurately. The geometrically
nonlinear theory represents a basis for the reliable description of the postbuckling
behaviour of the imperfect plate.

Murray and Wilson [1] first presented idea of combining incremental (Euler)
and iterative (Newton–Raphson) methods for solving nonlinear problems. Early
works involving critical points and snap-through effect were written by Sharifi and
Popov [2], and Sabir and Lock [3]. Using arc-length method to pass limit points
on load–displacement paths introduced Riks in [4]. Getting through this problem
using displacement control procedure presented Batoz and Dhatt [5]. Detection
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of critical points using arc–length method was introduced by Wriggers and Simo
[6]. Works of Bathe [7] dominate in application of FEM to geometric nonlinear
problems, Crisfield [8] incorporated problematic into pc codes. Using the hither-
to obtained knowledge and picking up works of Ravinger [9], the author presents
results obtained as outputs of an own code for analysis of geometrically nonlinear
tasks of perfect and imperfect thin plates and shells.

2. Nonlinear Theory

Restricting to the isotropic elastic material and to the constant distribution of the
residual stresses over the thickness, the total potential energy can be expressed as:
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where εm, k are strains and curvatures of the neutral surface, ε0m, k0 are initial
strains and curvatures, q, p are displacements of the point of the neutral surface,
related load vector, D is the elasticity matrix.

The system of conditional equations [10] one can get from the condition of the
minimum of the increment of the total potential energy δ∆U = 0. This system
can be written as:

Kinc ∆α+ Fint − Fext −∆Fext = 0 (2)

where Kinc is the incremental stiffness matrix of the plate, Fint is the internal force
of the plate, Fext is the external load of the plate, ∆Fext is the increment of the
external load of the plate. Eq. (2) represents the base for the Newton–Raphson
iteration and the incremental method as well. The Gauss numerical integration (5
points) was used to evaluate the stiffness matrices and the load vectors.

In the case of the structure in equilibrium Fint −Fext = 0, one can execute the
incremental step Kinc ∆α = ∆Fext ⇒ ∆α = K−1

inc ∆Fext and αi+1 = αi + ∆α.
The Newton-Raphson iteration can be arranged in the following way: supposing
that αi does not represent exact solution, the residua are Fi

int − Fi
ext = ri. The

corrected parameters are αi+1 = αi +∆αi, where ∆αi = −K−1
inc r

i. The identity of
the incremental stiffness matrix with the Jacobbian of the system of the non-linear
algebraic equation was used. Iteration process is finished using the norm:
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≤ 0.001. (3)

3. Finite Element Method

The FEM computer program using a 48 DOF element [11] has been created for
analysis. Used FEM model consists of 8x8 finite elements. Full Newton–Raphson
procedure, in which the stiffness matrix is updated at every equilibrium iteration,
has been applied [8]. The fundamental path of the solution starts from the zero
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load level and from the initial displacement. It means that the nodal displacement
parameters of the initial displacements and the small value of the load parameter
have been taken as the first approximation for the iterative process. To obtain
other paths of the solution, random combinations of the parameters as the first
approximation have been used. Interactive change of the pivot member during
calculation is necessary for obtaining required number of L–D paths.

Obtained results were compared with results of the analysis using ANSYS sys-
tem, where 32x32 elements model was created. Boundary conditions (UZ on all
nodes along the edges, UX and UY as shown in Fig. 1b) and loads (shear) are
considered the same as in user code analysis. Element type SHELL143 (4 nodes,
6 DOF at each node) was used [12]. The arc-length method was chosen for anal-
ysis, the reference arc-length radius is calculated from the load increment. Only
fundamental path of nonlinear solution has been presented. Shape of the plate in
postbuckling has been also displayed.

Figure 1 a) Notation of the quantities of the plate loaded in shear, b) ANSYS FEM model

4. Illustrative Examples

Illustrative example of steel plate loaded in shear (Fig. 1) is presented.
Results of eigenvalue buckling analysis are presented first. These serve to pre-

pare shapes of initial geometrical imperfection [13, 14] as a linear combination of
eigenvectors. Also offer an image about location of critical points of nonlinear solu-
tion, help with settings in the management of nonlinear calculation process. Results
of fully nonlinear analysis follow. In order to better describe post–buckling shape
of the plate, nodal displacements wA, wC have been taken as the reference nodes.

4.1. Eigenvalue buckling analysis

Eigenvalue buckling analysis predicts the theoretical buckling strength of an ideal
linear elastic structure and is a problem of eigenvalues and eigenvectors. Eigenvalues
define the buckling load multipliers and the corresponding eigenvectors buckling
mode shapes of the structure. Results for perfect plate [15] from Fig.1 can be seen
in Tab. 1.
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209.07 [N/mm] 258.86 554.57 598.53

685.41 721.70 896.66 983.59

Table 1. Buckling loads and buckling modes

4.2. Nonlinear analysis

The geometrically nonlinear theory represents a basis for the reliable description of
the postbuckling behaviour of imperfect plate [16, 17]. The result of the numerical
solution of steel plate loaded in shear is presented as load – displacement paths.
The initial displacements were assumed as the out of plane displacements only [18]
as a combination of first three buckling modes

d0 =
∑

αi ∗MODEi (4)

where αi is multiplier – appropriately selected constant (specified for each case
individually), MODE i represents i-th eigenmode (dimensionless).

These presented nonlinear solutions of the postbuckling behaviour of the plate
are divided into two parts. On the left side, there is load versus nodal displacement
parameters relationship, on the right side the relevant level of the total potential
energy is drawn [19]. (Unloaded plate represents a zero total potential energy level.)

Figure 2 Results for α1 = 0.3 mm, α2 = 0.2 mm, α3 = 0.1 mm
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Following Figures present two cases, in which the plate in a post–buckling mode
buckles in the shape that is identical to a shape of initial imperfection (different from
the first buckling mode obtained from eigenvalue buckling analysis). The difference
consists in a fact, that while in first case the fundamental path represents the path
with minimum value of the total potential energy for a given load, in the second
case there exists also a path with the total potential energy level lower than that of
the fundamental path [20].

Fig. 2 presents a nonlinear analysis of the plate with initial imperfection whose
shape was formed from first three eigenmodes. According to Eq. (4), following
parameters α were considered: α1 = 0.3 mm, α2 = 0.2 mm, α3 = 0.1 mm. There
are presented first three loading paths representing various forms of changes between
buckling shapes. Displacement wC has been plotted by a thick line, wA by a thin
line. The Figure illustrates also shapes of the buckling area for particular paths and
selected load values. In the right part, respective values of total potential energy
can be seen. Fundamental path (solid line) corresponds with the minimum value of
total potential energy, thus there is no presumption of a sudden snap.

For comparison with an analysis of the same plate using ANSYS software system,
the fundamental path of solution is presented (see Fig. 3).

Figure 3 Fundamental path for α1 = 0.3 mm, α2 = 0.2 mm, α3 = 0.1 mm obtained by ANSYS

In Fig. 4 one can observe analysis of an imperfect plate with initial imperfection
of a shape identical to a shape of the 2nd eigenmode. Parameter α2 of a value
0.1mm has been considered.

Displacement wC has been plotted by a thick line, wA by a thin one again.
Shapes of the buckling area are located next to the paths. On the right side of the
Figure one can see, that the total potential energy for the fundamental path (solid
line) is higher than energy for path 2 (dashed line). This path 2 represents buckling
according to the 1st buckling mode, thus there is presumption of a snap effect. For
comparison with an analysis of the same plate using ANSYS software system, the
fundamental path of solution is presented (see Fig. 5).
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Figure 4 Results for α2 = 0.1 mm

Figure 5 Fundamental path for α2 = 0.1 mm obtained by ANSYS

The shape of a loading path provides immediate information about the behaviour
of a structure subjected to a load of a respective level. Individual paths of the
presented solutions have different stability properties. This evaluation was not
the subject of the paper. More detailed description of evaluation of quality of
solution resulting from the analysis of the incremental stiffness matrix can be found
e.g. in [20]. It should be pointed out, that K inc must be in a fundamental form
(load control).

5. Summary

The influence of the value of the amplitude and the mode of the initial geometrical
imperfections on the postbuckling behaviour of the imperfect plate subjected to
the shear load was presented. Finite elements created for special purposes of plate
stability analysis, enable high accuracy and speed convergence of the solution at
less density of meshing. The possibility on an interactive affecting of the calculation
within the user code makes it possible to investigate all load – displacement paths
of the problem.
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As the important result one can note, that the level of the total potential energy
of the fundamental stable path can be higher than the total potential energy of
the secondary stable path. This is the assumption for the sudden change in the
buckling mode of the plate. The evaluation of the level of the total potential energy
for all paths of the non-linear solution is a small contribution to the investigation
of the post buckling behaviour of imperfect plates. To be able to give a full answer
for the mechanism of this phenomenon, more in–depth research will be required.
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