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The dispersion analysis in a fluid filled and immersed thermo–electro elastic hollow cylin-
der composed of homogeneous, transversely isotropic material is studied within the frame
work of linear theory of elasticity. The motions of the cylinder are formulated using the
constitutive equations of a transversely isotropic piezo–thermo elastic material with a
preferred material direction collinear with the longitudinal axis of the cylinder. The equa-
tions of motion of the internal and external fluids are formulated using the constitutive
equations of an inviscid fluid. Displacement potentials are used to solve the equations of
motion of the hollow cylinder and the fluids. The perfect–slip boundary condition is em-
ployed at the fluid–solid interface to find the frequency equation of the coupled system
consisting of the cylinder, internal and external fluid. The non–dimensional frequen-
cies obtained by the author are compared with the result of Paul and Raju [Paul, H. S.,
Raju, D. P, Asymptotic analysis of the modes of wave propagation in a piezoelectric solid
cylinder. J. Acoust. Soc. Am. 71(2)( 1982) 255–263] which matches well and shows
the exactness of the author’s method. The computed dimensionless frequency, phase
velocity, attenuation, thermo mechanical coupling factor and specific loss are plotted in
the form of dispersion curves for the material PZT-5A.

Keywords: wave propagation in piezoelectric cylinder/plates, solid–fluid interaction,
thermal cylinders/plates, mechanical vibrations, cylinder immersed in fluid, Bessel/Hankel
functions, sensors/actuators.

1. Introduction

Piezoelectric materials have been used extensively in the construction of sensors
and transducers due to their direct and converse piezoelectricity effects. The direct
piezoelectric effect is used in sensing applications, such as in force or displacement
sensors. The converse piezoelectric effects are used in transduction applications,
such as in motors and device that precisely control positioning, and in generating
sonic and ultra sonic signals. The piezoelectric materials are physically strong and
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chemically inert, and they are relatively inexpensive to manufacture. The composi-
tion, shape and dimension of piezoelectric ceramic elements can be tailored to meet
the requirements of a specific purpose. Ceramics manufactured from formulations
of lead zirconate / lead titanate exhibit greater sensitivity and higher operating
temperatures, relative to ceramics of other compositions and the materials PZT-5A
are most widely used piezoelectric ceramics.

Early studies in elastic wave propagation in cylindrical waveguides are mostly
concerned with isotropic cylinders. The historical development of the problem has
been given by Meeker and Meitzler [1].Two–part study by Mirsky [2] was devoted
to the problem of longitudinal waves propagation in transversely isotropic circu-
lar cylinders using an approach based on potential functions.The propagation of
compressional elastic waves along an anisotropic circular cylinder with hexagonal
symmetry was first studied by Morse [3].

Theoretical studies on electroelastic wave propagation in anisotropic piezoce-
ramic cylinders have also been pursued for many years. The approach usually ap-
plied for piezoelectric solids is the simplification of Maxwell’s equations by neglecting
magnetic effects, conduction, free charges, and displacement currents. Studies by
Tiersten [4]should be mentioned among the early notable contributions to the topic
of the mechanics of piezoelectric solids. Electro elastic governing equations of piezo-
electric materials are presented by Parton and Kudryavtsev [5]. Shul’ga [6] studied
the propagation of axisymmetric and non–axisymmetric waves in anisotropic piezo-
ceramic cylinders with various prepolarization directions and boundary conditions.

Rajapakse and Shou [7] solved the coupled electroelastic equations for a long
piezoceramic cylinder by applying Fourier integral transforms. Paper by Wang [8]
should be mentioned among the studies of cylindrical shells with a piezoelectric
coat. Ebenezer and Ramesh [9] analyzed axially polarized piezoelectric cylinders
with arbitrary boundary conditions on the flat surfaces using the Bessel series. Berg
et al. [10] assumed electric field not to be constant over the thickness of piezoceramic
cylindrical shells. Later, Botta and Cerri [11] extended this approach and compared
their results with those in which the effect of variable electric potential was not
considered. Kim and Lee [12] studied piezoelectric cylindrical transducers with
radial polarization and compared their results with those obtained experimentally
and numerically by the finite element method.

The coupling between the thermal/electric/elastic fields in piezo electric mate-
rials provides a mechanism for sensing thermo mechanical disturbances from mea-
surements of induced electric potentials, and for altering structural responses via
applied electric fields. One of the applications of the piezo-thermoelastic material
is to detect the responses of a structure by measuring the electric charge, sensing
or to reduce excessive responses by applying additional electric forces or thermal
forces actuating. If sensing and actuating can be integrated smartly, a so–called
intelligent structure can be designed. The coupling between the thermo-elastic and
pyro–electric effects is important to qualify the effect of heat dissipation on the
propagation of wave at low and high frequencies.

The thermo- piezoelectric theory was first proposed by Mindlin [13], later he
derived the governing equations of a thermo–piezoelectric plate [14]. The phys-
ical laws for the thermo–piezoelectric materials have been discussed by Nowacki
[15, 16]. Chandrasekhariah [17, 18] presented the generalized theory of thermo–
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piezoelectricity by taking into account the finite speed of propagation of thermal
disturbance. Yang and Batra [19] studied the effect of heat conduction on shift in
the frequencies of a freely vibrating linear piezoelectric body with the help of per-
turbation methods. Sharma and Pal [20] discussed the propagation of Lamb waves
in a transversely isotropic piezothermoelastic plate. Sharma et al [21]investigated
the free vibration analysis of a homogeneous, transversely isotropic, piezothermoe-
lastic cylindrical panel based on three dimensional piezoelectric thermoelasticity.
Ponnusamy [22] studied the wave propagation in generalized thermo-elastic cylin-
der of arbitrary cross section using Fourier collocation method.Dispersion analysis
of generalized magneto-thermoelastic waves in a transversely isotropic cylindrical
panel is analyzed by Ponnusamy and Selvamani [23].

Sinha et al [24] have studied the axisymmetric wave propagation in circular
cylindrical shell immersed in a fluid, in two parts. In Part I, the theoretical analy-
sis of the propagation modes is discussed and in Part II, the axisymmetric modes
excluding tensional modes are obtained theoretically and experimentally and are
compared. Berliner and Solecki [25] have studied the wave propagation in a fluid
loaded transversely isotropic cylinder. In that paper, Part I consists of the analyt-
ical formulation of the frequency equation of the coupled system consisting of the
cylinder with inner and outer fluid and Part II gives the numerical results.

Selvamani and Ponnusamy [26] studied the wave propagation in a generalized
thermo elastic plate immersed in fluid. Recently, the dynamic response of a solid
bar of cardioidal cross–sections immersed in an inviscid fluid was performed by
Selvamani and Ponnusamy [27]. Dayal [28] investigated the free vibrations of a
fluid loaded transversely isotropic rod based on uncoupling the radial and axial
wave equations by introducing scalar and vector potentials. Nagy [29] studied the
propagation of longitudinal guided waves in fluid–loaded transversely isotropic rod
based on the superposition of partial waves.

The present article emphasis the dispersion analysis in a fluid filled thermo–
piezo elastic hollow cylinder immersed in an inviscid fluid. The frequency equations
are obtained from the solid–fluid interfacial boundary conditions. The computed
dimensionless frequency, phase velocity, attenuation, thermo mechanical coupling
factor and specific loss are plotted in the form of dispersion curves for the material
PZT-5A.To discuss the accuracy of the author’s result with the existing literature,
the frequency equations are first solved by omitting the fluid medium and thermo
coupling and the dimensionless eigen frequencies are obtained. The frequencies
are compared with the frequencies obtained by Paul and Raju [30] for longitudinal
mode, and it is noted that all in agreement with the author’s result as shown in
Tab. 1.

2. Formulation of the problem

The system under consideration is shown in Fig. 1. It consists of an infinitely long
linearly elastic homogeneous transversely isotropic piezo–thermo elastic cylinder
with inner radius aand outer radius bThe cylinder is filled with an irrotational,
inviscid fluid with density ρf1 and an acoustic phase velocityc1. The cylinder is also

immersed in a second irrotational, inviscid fluid with density ρf2 .
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Figure 1 The fluid–filled hollow cylinder immersed in an infinite fluid

Since the system is assumed to be linear, so that the linearized three–dimensional
stress equations of motion can be used for both the cylinder and fluid. The complete
equations governing the behavior of piezoelectric cylinder have been considered from
Paul [31]. In cylindrical coordinates(r, θ, z), the equations of motion in the absence
of body force are:

σrr,r + r−1σrθ,θ + σrz,z + r−1 (σrr − σθθ) = ρur,tt

σrθ,r + r−1σθθ,θ + σθz,z + 2r−1σrθ = ρuθ,tt (1)

σrz,r + r−1σθz,θ + σzz,z + r−1σrz = ρuz,tt

The heat conduction equation for transversely isotropic medium is

K1

(
T,rr + r−1T,r + r−2T,θθ

)
+K3T,zz − ρcvT,t = To (β1 (err + eθθ)

+β3ezz − p3ϕ,z),t (2)

The electro static equation which satisfies the Gaussian equation is

1

r

∂

∂r
(rDr) +

1

r

∂Dθ

∂θ
+
∂Dz

∂r
= 0 (3)
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The elastic, the piezoelectric and dielectric matrices of the 6mm crystal class, the
piezoelectric relations are:

σrr = c11err + c12eθθ + c13ezz − β1T − e31Ez

σθθ = c12err + c11eθθ + c13ezz − β1T − e31Ez

σzz = c13err + c13eθθ + c33ezz − β3T − e33Ez

σrθ = c66erθ

σθz = c44eθz − r−1e15Eθ (4)

σrz = 2c44erz − e15Er

Dr = e15erz + ε11Er

Dθ = e15eθz + r−1ε11Eθ

Dz = e31 (err + eθθ) + e33ezz + ε33Ez + p3T

where σrr, σθθ, σzz, σrθ, σθz, σrz are the stress components, err, eθθ, ezz, erθ, eθz,
erz are the strain components, T is the temperature change about the equilibrium
temperature To, c11, c12, c13, c33, c44 and c66 = (c11 − c12)/2 are the five elastic
constants, β1, β3 and K1, K3 respectively thermal expansion coefficients and ther-
mal conductivities along and perpendicular to the symmetry, ρ is the mass density,
cv is the specific heat capacity, p3is the pyroelectric effect.

The strain eij are related to the displacements are given by:

err = ur,r eθθ = r−1 (ur + uθ,θ) ezz = uz,z

erθ = uθ,r + r−1 (ur,θ − uθ) ezθ =
(
uθ,z + r−1uz,θ

)
(5)

erz = uz,r + ur,z

Substituting the Eqs. (4) and (5) in the Eqs. (1)–(3), results in the following
three–dimensional equations of motion, heat and electric conductions as follows:

c11
(
urr,r + r−1ur,r − r−2ur

)
− r−2 (c11 + c66)uθ,θ + r−2c66ur,θθ + c44ur,zz

+(c44 + c13)uz,rz + r−1 (c66 + c12)uθ,rθ + (e31 + e15)V,rz = ρur,tt

r−1 (c12 + c66)ur,rθ + r−2 (c66 + c11)ur,θ + c66
(
uθ,rr + r−1uθ,r − r−2uθ

)
+r−2c11uθ,θθ + c44uθ,zz + r−1 (c44 + c13)uz,θz + (e31 + e15)V,θz = ρuθ,tt

c44
(
uz,rr + r−1uz,r + r−2uz,θθ

)
+ r−1 (c44 + c13) (ur,z + uθ,θz)

+ (c44 + c13)ur,rz + c33uz,zz + e33V,zz + e15
(
V,rr + r−1V,r + r−2V,θθ

)
= ρuz,tt

K1

(
T,rr + r−1T,r + r−2T,θθ

)
+K3T,zz − ρcvT,t = To

(
β1(ur,r + r−1uθ,θ (6)

+r−1ur) + β3uz,z − p3ϕ,z
)
,t

e15
(
uz,rr + r−1uz,r + r−2uz,θθ

)
+ (e31 + e15)

(
ur,zr + r−1ur,z + r−1uθ,zθ

)
+e33uz,zz − ε33V,zz − ε11

(
V,rr + r−1V,r + r−2V,θθ

)
= 0

3. Boundary conditions

3.1. Mechanical boundary conditions

In the solid–fluid interface problems, the normal stress of the cylinder is equal to the
negative of the pressure exerted by the fluid and the displacement component in the
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normal direction of the lateral surface of the cylinder is equal to the displacement
of the fluid in the same direction. These conditions are due to the continuity of
the stresses and displacements of the solid and fluid boundaries. Since the fluid
inviscid, it cannot sustain shear stress, the shear stress of the outer fluid is equal to
zero.

[σrr, σrθ, σrz, ur] =
[
−pf1 , 0, 0, ufr

]
, r = a

(7)

[σrr, σrθ, σrz, ur] =
[
−pf2 , 0, 0, ufr

]
, r = b

3.2. Thermal boundary conditions

Isothermal surfaces

T = 0 (8)

Thermally insulated surfaces

T,r = 0

3.3. Electrical boundary conditions

Electrically shorted (Closed circuits) surfaces

Dr = 0

Charge free (Open circuits) surfaces

V = 0 (9)

4. Solutions of the field equation

The Eqs. (6) are coupled partial differential equations of the three displacement
components. This system of equations can be uncoupled by eliminating two of the
three displacement components through two of the three equations, but this result
in partial differential equations of sixth order. To uncouple the Eqs. (6), we follow
Paul [31] and assuming the solution of Eqs. (6) as follows:

ur (r, θ, z, t) =
(
ϕ,r + r−1ψ,θ

)
ei(kz+ωt)

uθ (r, θ, z, t) =
(
r−1ϕ,θ − ψ,r

)
ei(kz+ωt)

uz (r, θ, z, t) =

(
i

a

)
Wei(kz+ωt)

T (r, θ, z, t) =
c44
β3a2

Tei(kz+ωt) (10)

V (r, θ, z, t) = iV ei(kz+ωt)

Er (r, θ, z, t) = −E,re
i(kz+ωt)

Eθ (r, θ, z, t) = −r−1E,θe
i(kz+ωt)

Ez (r, θ, z, t) = E,ze
i(kz+ωt)
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where i =
√
−1, k is the wave number, ω is the angular frequency, ϕ (r, θ) , W (r, θ),

ψ (r, θ) and E (r, θ) , T (r, θ) are the displacement potentials and V (r, θ) is the elec-
tric potentials and a is the geometrical parameter of the cylinder.

By introducing the dimensionless quantities such as x = r/a, ζ = ka, Ω2 =
ρω2a2/c44, c̄11 = c11/c44, c̄13 = c13/c44, c33 = c33/c44, e13 = e13/e33, e15 = e15/e33,
ε11 = ε11/ε33 ,c66 = c66/c44 and substituting Eq. (10) in Eq. (6), we obtain:

(
c11∇2 +

(
Ω2 − ζ2

))
ϕ− ζ (1 + c13)W − ζ (e31 + e15)V = 0

ζ (1 + c13)∇2ϕ+
(
∇2 +

(
Ω2 − ζ2c33

))
W +

(
e15∇2 − ζ2

)
V = 0 (11)

β∇2ϕ− ζW +
(
d+ ik1∇2 − ik3ζ

2
)
T + ζp3V = 0

ζ (e31 + e15)∇2ϕ+
(
e15∇2 − ζ2

)
W +

(
ζ2ε33 − ε11∇2

)
V = 0

and (
c66∇2 +

(
Ω2 − ζ2

))
ψ = 0 (12)

where

∇2 =
∂2

∂x2
+ x−1 ∂

∂x
+ x−2 ∂

2

∂θ2

The Eq. (11) can be written as the vanishing determinant form∣∣∣∣∣∣∣∣
d11 d12 d13 d14
d21 d22 d23 d24
d31 d32 d33 d34
d41 d42 d43

∣∣∣∣∣∣∣∣ (ϕ,W, T, V ) = 0 (13)

where:

d11 = c11∇2 +
(
Ω2 − ζ2

)
d12 = −ζ (1 + c13)

d13 = −β d14 = −ζ (e31 + e15)

d21 = ζ (1 + c13)∇2 d22 =
(
∇2 +

(
Ω2 − ζ2c33

))
d23 = −ζ d24 =

(
e15∇2 − ζ2

)
d31 = β∇2 d32 = −ζ
d33 =

(
d+ ik1∇2 − ik3ζ

2
)

d34 = ζp3

d41 = ζ (e31 + e15)∇2 d42 =
(
e15∇2 − ζ2

)
d43 = ζp3 d44 =

(
ζ2ε33 − ε11∇2

)
Evaluating the determinant given in Eq.(13), we obtain a partial differential equa-
tion of the form(

A∇8 +B∇6 + C∇4 +D∇2 + E
)
(ϕ,W, T, V ) = 0 (14)
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where:

A = −ik1c11g18
B = c11

(
g9 − ik1ε11g2 + e15g17

)
+ ik1

(
g1g18 − ζ2g23

)
− β

2
g18

C = c11(g2g9 + ζ2(g5 + ε11 + 2e15g8 − ik1ζ
2)) + g1(g9 − ik1ε11g2 + e15g17)

−β(βε11g2 − ζ2(βε33 − p3g3 − g3e15 + 2βe15)) + ζ2g4(g4g14 + βe15 + ζg3g15)

−ζ2g3(ik1e15g4 + β(p3 + e15)− g3(g16 + ik1g2))

D = ζ2c11(g2g5 − ζ2(g8 − g7)) + g1(g2g9 + ζ2(g5 + ε11 + 2e15g8 − ik1ζ
2)

+ζ2g4(g4(g11 + p3ζε11)− ζg3g12 − βζ(ζ + p23))

−βζ2(g4g13 − g2(βε33 − p3g3)− ζ(g3 − β))

−ζ2g3(g4g11 + g2(βp3 − g3g16) + ζ2(g3 − β))

E = ζ2g1g2g5 − ζ2
(
g1g8 − g1g7 + g24g6 + βg4g7 − g4g3g8

)
in which:

g1 = Ω2 − ζ2 g2 = Ω2 − ζ2c33 g3 = e31 + e15 g4 = 1 + c13

g5 = dε3 − ik3ε33ζ
2 − p23 g6 = d+ p3ζε33 g7 = p3 − ε33 g8 = d− p3 − ik3ζ

2

g9 = ik1ζ
2ε33 + ik3ε11ζ

2 − dε11 g10 = ε11 + 2e15g8 − ik1ζ
2

g11 = de15 − ik1ζ
2 − ik3ζ

2e15 g12 = ζ2ε33 + dp3 − ik3p3ζ
2

g13 = ε11 − p3e15 g14 = i
(
k1e15 + k3

)
g15 = ε11 − ip3k1 g16 = d

2 − ζ2ik3

g17 = ik1ζ
2 − g11 g18 = ε11 + e215

Factorizing the relation given in Eq. (14) into biquadratic equation for (αia)
2
,

(i = 1, 2, 3, 4), the solutions for the symmetric modes are obtained as:

ϕ =
4∑

i=1

[AiJn (αiax) +BiYn (αiax)] cosnθ

W =
4∑

i=1

ai [AiJn (αiax) +BiYn (αiax)] cosnθ

T =
4∑

i=1

bi [AiJn (αiax) +BiYn (αiax)] cosnθ (15)

V =
4∑

i=1

ci [AiJn (αiax) +BiYn (αiax)] cosnθ

Here (αia)
2
> 0, (i = 1, 2, 3, 4) are the roots of the algebraic equation

A (αa)
8 −B (αa)

6
+ C (αa)

4 −D (αa)
2
+ E = 0 (16)

The solutions corresponding to the root (αia)
2
= 0 is not considered here, since

Jn (0) is zero, except forn = 0. The Bessel function Jn is used when the roots
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(αia)
2
, (i = 1, 2, 3, 4)are real or complex and the modified Bessel function Inis used

when the roots (αia)
2
, (i = 1, 2, 3, 4)are imaginary.

The constants ai, bi and ci defined in the Eq. (14) can be calculated from the
equations:

ai =
(
βp3 − g3L

)/(
g4L+ β

)
bi = −

(
g3β (αia)

2
+ p3

(
g1 + c11 (αia)

2
))/(

g4L+ β
)

(17)

ci =
(
(αia)

2 (
g4β − c11

)
− g1

)/(
g4L+ β

)
where

L =
(
d− ik1 (αia)

2 − ik3ζ
2
)

Solving the Eq. (10), the solution to the anti-symmetric mode is obtained as

ψ = A5 [Jn (α5ax) + Yn (α5ax)] sinnθ (18)

where (α5a)
2
= Ω2 − ζ2. If (α5a)

2
< 0, the Bessel function Jn is replaced by the

modified Bessel function In.

5. Equations of motion of the fluid

In cylindrical polar coordinates r, θ and z the acoustic pressure and radial displace-
ment equation of motion for an invicid fluid are of the form Achenbach [32]

pf = −Bf
(
ufr,r + r−1(ufr + ufθ,θ) + ufz,z

)
(19)

and

c−2
f ufr,tt = ∆,r (20)

respectively where Bf , is the adiabatic bulk modulus, ρf is the density,

cf =
√
Bf

/
ρf is the acoustic phase velocity in the fluid, and

(
ufr , u

f
θ , u

f
z

)
is the

displacement vector.

∆ =
(
ufr,r + r−1(ufr + ufθ,θ) + ufz,z

)
(21)

Substituting

ufr = ϕf,r, u
f
θ = r−1ϕf,θ andu

f
z = ϕf,z (22)

and seeking the solution of (21) in the form

ϕf (r, θ, z, t) =

∞∑
n=0

ϕf (r) cosnθei(kz+ωt) (23)

the oscillating waves propagating in the inner fluid located in the annulus is given
by

ϕf = A5Jn(α5ax) (24)
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where (α5a)
2
= Ω2

/
ρf1B

f

1 − ς2, in which ρf1 = ρ1
/
ρf ,B

f

1 = Bf
1

/
c44. If (α5a)

2
< 0,

the Bessel function Jn in (24) is to be replaced by modified Bessel function In.
Similarly, for the outer fluid that represents the oscillatory waves propagating away
is given as

ϕf = B5H
(2)
n (α6ax) (25)

where (α6a)
2
= Ω2

/
ρf2B

f

2 − ς2, in which ρf2 = ρ2
/
ρf , B

f

2 = Bf
2

/
c44, H

(2)
n is the

Hankel function of the second kind. If (α6a)
2 < 0, then the Hankel function of

second kind is to be replaced by Kn, where Kn is the modified Bessel function of
the second kind. By substituting Eq. (22) in (19) along with (24) and (25), the
acoustic pressure for the inner fluid can be expressed as

pf1 = A5Ω
2ρ1Jn(α5ax) cosnθe

i(ςz+ΩTa) (26)

and for the outer fluid is

pf2 = B5Ω
2ρ2H

(2)
n (α6ax) cosnθe

i(ςz+ΩTa) (27)

6. Frequency equations

Substituting the solutions given in the Eqs. (15), (18), (26) and (27) in the bound-
ary conditions given in the Eqs. (7), we obtain a system of eight linear algebraic
equations as follows

[A] {X} = {0} (28)

where [A] is a 12 × 12 matrix of unknown wave amplitudes, and {X} is an
12×1 column vector of the unknown amplitude coefficients A1, B1, A2, B2, A3, B3,
A4, B4, and A5, B5.... The solution of Eq. (28) is nontrivial when the determinant
of the coefficient of the wave amplitudes {X} vanishes, that is |A| = 0.
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The elements in the above determinant is defined as:

a1i = 2c66 {n (n− 1) Jn (αiax) + (αiax)Jn+1 (αiax)}

−x2
[
(αia)

2
c11 + ζc13ai + ζbi + βci

]
Jn (αiax) i = 1, 2, 3, 4

a14 = 2c66n {(n− 1)Jn (α4a)− (α4a)Jn+1 (α4a)}
a15 = 2c66n {(n− 1)Yn (α4a)− (α4a)Yn+1 (α4a)}

a1i = 2c66

{
n (n− 1)− c11 (αia)

2 − ς (c13ai + e31bi)
}
Yn (αia)

+2c66 (αia)Yn+1 (αia) i = 6, 7, 8

a19 = ρ1Ω
2Jn (α5a) a10 = ρ2Ω

2H(2)
n (α6a) a1i = 0 i = 11, 12

a2i = 2n {(n− 1) Jn (αia) + (αia)Jn+1 (αia)} i = 1, 2, 3

a24 =
{[

(α4a)
2 − 2n (n− 1)

]
Jn (α4a)− 2 (α4a) Jn+1 (α4a)

}
a25 =

{[
(α4a)

2 − 2n (n− 1)
]
Yn (α4a)− 2 (α4a)Yn+1 (α4a)

}
a2i = 2n {(n− 1)Yn (αia) + (αia)Yn+1 (αia)} i = 6, 7, 8

a2i = 0, i = 9, 10, 11, 12

a3i = ((ς + ai) + e15bi) {nJn (αia)− (αia)Jn+1 (αia)} i = 1, 2, 3

a34 = nςJn (α4a) a35 = nςYn (α4a)

a3i = ((ς + ai) + e15bi) {nJn (αia)− (αia)Jn+1 (αia)} i = 6, 7, 8

a3i = 0, i = 9, 10, 11, 12

a4i = biJn (αia) i = 1, 2, 3 a44 = 0 a45 = 0

a4i = biYn (αia) i = 6, 7, 8 a4i = 0 i = 9, 10, 11, 12

a5i = {nJn (αia)− (αia)Jn+1 (αia)} i = 1, 2, 3 a54 = nJn (α4a)

a55 = nYn (α4a) a5i = {nYn (αia)− (αia)Yn+1 (αia)} i = 6, 7, 8

a59 = Ω2ρ1 {nJn (α5a)− (α5a) Jn+1 (α5a)}

a510 = Ω2ρ2

{
nH(2)

n (α6a)− (α6a)H
(2)
n+1 (α6a)

}
a5i = 0 i = 11, 12

a6i = ci {nJn (αiax)− (αiax)Jn+1 (αiax)} i = 1, 2, 3a64 = nJn (α4a)

a65 = nYn (α4a)

a6i = ((ς + ai) + e15bi) {nJn (αia)− (αia)Jn+1 (αia)} i = 6, 7, 8

a6i = 0, i = 9, 10, 11, 12

The complex secular Eq. (28) contains complete information regarding wave num-
ber, phase velocity and attenuation coefficient and other propagation characteristics
of the considered surface waves. In order to solve this equation we take

c−1 = v−1 + iω−1q (29)

where ζ = R+iq, R = ω
v and R, q are real numbers. Here it may be noted that v and

q respectively represent the phase velocity and attenuation coefficient of the waves.
Upon using the representation (29) in Eq. (28) and various relevant relations, the
complex roots αi(i = 1, 2, 3, 4) of the Eq. (15) can be computed with the help of
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Secant method. The characteristics roots αi(i = 1, 2, 3, 4) are further used to solve
the Eq. (28) to obtain phase velocity(v) and attenuation coefficient (q) by using
the functional iteration numerical technique as given below.

The Eq.(28) is of the form F (C) = 0 which upon using representation (29) leads
to a system of two real equations f(v, q) = 0 and g(v, q) = 0. In order to apply
functional iteration method, we write v = f∗(v, q) and q = g∗(v, q), where the
functions f∗ and g∗ are selected in such a way that they satisfies the conditions∣∣∣∣∂f∗∂v

∣∣∣∣+ ∣∣∣∣∂g∗∂q
∣∣∣∣ < 1

∣∣∣∣∂g∗∂v
∣∣∣∣+ ∣∣∣∣∂f∗∂q

∣∣∣∣ < 1 (30)

For all v, q in the neighborhood of the roots. If (v0, q0) be the initial approximation
of the root, then we construct a successive approximation according to the formulae:

v1 = f∗(v0, q0) q1 = g∗(v1, q0)
v2 = f∗(v1, q1) q2 = g∗(v2, q1)
v3 = f∗(v2, q2) q3 = g∗(v3, q2)
....................... .......................
vn = f∗(vn, qn) qn = g∗(vn+1, qn)

(31)

The sequence {vn, qn} of approximation to the root will converge to the actual value
(v0, q0) of the root provided(v0, q0)lie in the neighborhood of the actual root. For
the initial value c = c0 = (v0, q0), the roots αi(i = 1, 2, 3, 4) are computed from
the Eq. (15) by using Secant method for each value of the wave number ζ, for
assigned frequency. The values of αi(i = 1, 2, 3, 4) so obtained are then used in
the Eq.(28) to obtained the current values of v and q each time which are further
used to generate the sequence (30). This process is terminated as and when the
condition |vn+1 − vn| < ε, ε being arbitrary small number to be selected at random
to achieve the accuracy level, is satisfied. The procedure is continually repeated for
different values of the wave number (ζ) to obtain the corresponding values of the
phase velocity (v) and attenuation coefficient (q).

6.1. Particular case

The frequency equation for a piezoelectric solid circular cylinder is obtained discard-
ing the inner and outer fluid medium, thermal field in the corresponding equations
and solutions along with the outer boundary conditions, and substitute in the solu-
tion and frequency equations Yn and Yn+1 is equal to zero. The frequency equations
obtained in this method matches well with the frequency equations of Paul and Raju
[31] which shows the exactness of this method.

6.2. Specific loss

The internal energy of a material is defined by specific loss. The specific loss is the
ratio of the amount of energy (∆E) dissipated in a specimen through a stress cycle
to the elastic energy (E) stored in that specimen at a maximum strain. According
to Kolsky [33], specific loss (∆E/E) is equal to 4π times the absolute value of the
imaginary part of ζ to the real part of ζ, therefore we have

S.L = |∆E/E| = 4π |Im (ζ)/Re (ζ)| = |vq/ω| (32)
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The real and imaginary parts of the wave number is obtained from the relation
ζ = R+ iq, where R = ω/ν and the wave speed (v) and the attenuation coefficient
(q) are real numbers.

6.3. Thermo mechanical coupling

The coupling effect between thermal and elasticity in a thermo elastic material pro-
vides a mechanism for sensing thermo mechanical disturbance from measurements
of induced magnetic potentials, and for altering structural responses through ap-
plied magnetic fields in the design of sensors and surface acoustic damping wave
filters. Thermo mechanical coupling factor is defined as

κ2 =

∣∣∣∣V1 − V2
V2

∣∣∣∣ (33)

where V1 is the phase velocity of the wave under thermally insulated boundary and
V2phase velocity of the wave under isothermal boundary.

7. Numerical examples and discussion

The frequency equation given in Eq. (28) is transcendental in nature with unknown
frequency and wave number. The solutions of the frequency equation are obtained
numerically by fixing the non–dimensional wave number. The material properties of
PZT-5A and PZT-4A are taken from Berlincourt et al [34] are used for the numerical
calculation is given below:
Example 1: Consider the fluid filled and immersed piezo-thermo elastic hollow
cylinder with the material properties of PZT-5A

c11 = 13.9× 1010Nm−2 c12 = 7.78× 1010Nm−2 c13 = 7.43× 1010Nm−2

c33 = 11.3× 1010Nm−2 c44 = 2.56× 1010Nm−2 c66 = 3.06× 1010Nm−2

β1 = 1.52× 106NK−1m−2 β3 = 1.53× 106NK−1m−2

T0 = 298K cv = 420 Jkg−1K−1 p3 = −452× 10−6CK−1m−2

K1 = K3 = 1.5 Wm−1K−1 e13 = −6.98Cm−2 e33 = 13.8Cm−2

e51 = 13.4Cm−2 ε11 = 60.0× 10−10C2N−1m−2

ε33 = 54.7× 10−10C2N−1m−2 ρ = 7500Kgm−2

and for fluid the density ρf = 1000 Kgm−3, phase velocity c = 1500 m/s−1 and
used for the numerical calculations.

In Tabs 2 and 3 the absolute, real and imaginary values the non–dimensional
wave number are given against dimensionless frequency for the two cases of electri-
cally shorted (Closed circuits) and charge free (Open circuits) boundary conditions.
The Tabs 2 and 3 clarifies that as the dimensionless frequency increases the non–
dimensional wave number also increases in both the electrical boundary conditions.
The computed dimensionless frequency, phase velocity, attenuation, thermo elastic
coupling and specific loss are plotted in the form of dispersion curves in Fig. 2–11.
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Figure 2 Dimensionless frequency versus non–dimensional wave number |for isothermal modes of
fluid–loaded piezo–thermo elastic cylinder immersed in fluid

Figure 3 Dimensionless frequency versus non–dimensional wave number for thermally insulated
modes of fluid–loaded piezo–thermo elastic cylinder immersed in fluid
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Figure 4 Phase velocity versus non–dimensional wave number for isothermal modes of fluid–loaded
piezo–thermo elastic cylinder immersed in fluid

Figure 5 Phase velocity versus non–dimensional wave number for thermally insulated modes of
fluid–loaded piezo–thermo elastic cylinder immersed in fluid
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Figure 6 Attenuation versus non–dimensional wave number for isothermal modes of fluid-loaded
piezo–thermo elastic cylinder immersed in fluid

Figure 7 Attenuation versus non-dimensional wave number for thermally insulated modes of
fluid-loaded piezo–thermo elastic cylinder immersed in fluid
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Figure 8 Thermo mechanical coupling factor versus non–dimensional wave number for isothermal
modes of fluid-loaded piezo–thermo elastic cylinder immersed in fluid

Figure 9 Thermo mechanical coupling factor versus non–dimensional wave number for thermally
insulated modes of fluid-loaded piezo–thermo elastic cylinder immersed in fluid
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Figure 10 Specific loss versus non–dimensional wave number for isothermal modes of fluid-loaded
piezo–thermo elastic cylinder immersed in fluid

Figure 11 Specific loss versus non–dimensional wave number for thermally insulated modes of
fluid–loaded piezo–thermo elastic cylinder immersed in fluid
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Example 2: Consider the transversely isotropic piezo–electric circular cylinder
with the material properties of PZT-4A:

c11 = 13.9× 1010Nm−2 c12 = 7.78× 1010Nm−2 c13 = 7.43× 1010Nm−2

c33 = 11.5× 1010Nm−2 c44 = 2.56× 1010Nm−2 c66 = 3.06× 1010Nm−2

e31 = −5.2Cm−2 e33 = 15.1Cm−2 e15 = 12.7Cm−2

ε11 = 6.46× 10−9C2N−1m−2 ε33 = 5.62× 10−9C2N−1m−2

The frequency equation for a piezoelectric circular cylinder of infinite length without
fluid medium is obtained by omitting the inner, outer fluid medium and thermo
coupling and substituting Yn and Yn+1 equal to zero in the solutions and frequency
equation, thus we obtain the frequency equation for a piezoelectric solid circular
cylinder. This frequency equation is compared with the frequency equations of Paul
and Raju [31], which matches well with the frequency equations of the author. The
non-dimensional frequencies are obtained using secant method for 0 < ς ≤ 0.1 for
the material PZT-4 and this frequencies are matches well with the non–dimensional
frequencies obtained by Paul and Raju [31] is given in Table 1 which shows the
exactness of the author’s method. From the Table 1, it is observed that, the non–
dimensional frequencies Ω are increases with respect to its wave number ς, also this
analysis clearly displays the structure of the frequency spectrum near the cut of
frequencies.

Table 1 Comparison of longitudinal mode of frequencies Ω of author with Paul and Raju [31]
for an infinite solid cylinder of PZT-4

ς n = 0 n = 1 n = 2
Author Paul

and
Raju

Author Paul
and
Raju

Author Paul
and
Raju

0.01 4.6654 4.6655 1.8911 1.8911 3.1815 3.1816
8.5421 8.5424 6.4147 6.4143 8.0351 8.0351
12.3876 12.3875 10.3462 10.3469 12.0568 12.0561
16.2235 16.2234 14.2201 14.2195 15.9751 15.9750

0.04 4.6667 4.6641 1.8913 1.8923 3.1824 3.1825
8.5423 8.5425 6.4145 6.4142 8.0351 8.0351
12.3844 12.3873 10.3471 10.3479 12.0564 12.0563
16.2237 16.2234 14.2195 14.2195 15.9754 15.9751

0.1 4.6566 4.6566 1.8991 1.8992 3.1870 3.1869
8.5426 8.5427 6.4135 6.4137 8.0351 8.0348
12.3859 12.3858 10.3472 10.3475 12.0573 12.0578
16.2234 16.2235 14.2193 14.2195 15.9756 15.9757
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Table 2 Absolute value of the non–dimensional wave number for the two cases of electrical
boundaries with dimensionless frequency

Ω Longitudinal mode Flexural mode
Open Closed Open Closed

0.1 1.2897 1.3595 1.5565 1.5572
0.3 1.6443 1.5726 1.8401 1.8402
0.5 1.8563 1.7824 2.1209 2.1236
0.7 2.0820 1.9813 2.4042 2.4040
1.0 2.4248 2.2932 2.8301 2.8311

Table 3 Real and imaginary value of the non–dimensional wave number for the two cases
of electrical boundaries with dimensionless frequency

Ω Longitudinal mode Flexural mode
Open Closed Open Closed
Real
(ζ)

Imag
(ζ)

Real
(ζ)

Imag
(ζ)

Real
(ζ)

Imag
(ζ)

Real
(ζ)

Imag
(ζ)

0.1 0.9108 0.9030 0.9416 0.9301 1.1013 1.1009 1.1011 1.1011
0.3 1.1612 1.1542 1.1183 1.1138 1.3027 1.3016 1.3013 1.3011
0.5 1.3120 1.2132 1.2592 1.2115 1.4992 1.5002 1.5009 1.5022
0.7 1.4727 1.4717 1.4014 1.4006 1.6988 1.7012 1.7001 1.6997
1.0 1.7171 1.7020 1.6246 1.6184 2.0024 1.9999 2.0020 2.0018

7.1. Dispersion curves

In this problem, there are two kinds of basic independent modes of wave propagation
have been considered, namely, the longitudinal and flexural modes. By choosing
respectively n = 0 and n = 1, we can obtain the non–dimensional frequencies of
longitudinal and flexural modes of vibrations. The notation used in the figures,
namely LM and FLM respectively denote the longitudinal mode and flexural mode.
The 1 refers the first mode, 2 refers the second mode and so on.

The dispersion curves are drawn for dimensionless frequency Ω versus the non–
dimensionl wave number |ς| for isothermal and thermally insulated boundaries of
piezo–thermo elatic fluid–loaded hollow cylinder immersed in fluid are respectively
shown in Figs. 2 and 3. From the Fig. 2, it is observed that the non–dimensional
frequency of the piezo-thermoelatic hollow cylinder shows almost linear variation
with respect to wave number for the isothermal boundary. But in Fig. 3, some
non–linearity nature is observed between 0 ≤ |ς| ≤ 0.2 due to the damping effect
of thermal insulation and surrounding fluid medium. From Figs. 2 and 3, the
radiation of energy is higher in flexural mode compared with longitudinal modes of
vibration.

The variation of the phase velocity(v) with respect to the non–dimensional wave
number |ς|of the piezo-thermo elastic hollow cylinder with the isothermal and ther-
mally insulated boundaries is shown in Figs. 4 and 5, respectively. From these
curves it is clear that the phase velocity curves are strong and sensitive only at
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the small values of wave number in the range 0 ≤ |ς| ≤ 4 in Figs. 3 and 4, but
for higher values of wave number, these become linear and non–dispersive for both
the boundaries of thermally insulated and isothermal. This type of phenomenon
explains the concept that, as the wave goes to the deeper in the medium (Higher
wave number) the coupling effect of various interacting fields increases which leads
to lower phase velocity. But there is a small oscillation of cut of frequency in Fig.
5 which might happen because of the radiation of the sound energy in to the fluid
produces damping in the system.

The dispersion of attenuation coefficient (q) with respect to the non–dimensional
wave number |ς| of the fluid filled and immersed piezo-thermo elastic hollow cylinder
is discussed for the two cases of isothermal and thermally insulated boundaries
in Fig. 6 and 7. The amplitude of displacement of the attenuation coefficient
increases monotonically to attain maximum value in 0 ≤ |ς| ≤ 2 and slashes down
to became asymptotically linear in the remaining range of the wave number in Fig.
6. The variation of attenuation coefficient for longitudinal and flexural modes of
vibration is oscillating in the starting range of wave number as shown in Fig. 7 for
thermally insulated boundary. From Fig. 6 and 7, it is clear that the attenuation
profiles exhibits high oscillating nature in the small wave number range since, the
energy radiation is more sensitive in the surface areas. The cross over points in the
vibrational modes indicates the energy transfer between the solid and fluid medium.

In Fig. 8 and 9 the effect of the specific loss (S.L) factor for isothermal and
thermally insulated boundaries are discussed non–dimensional wave number |ς|.
The magnitude of the energy dissipation (specific loss) factor is attaining maximum
value at 0 ≤ |ς| ≤ 0.2 for the fluid filled and immersed piezo–thermo elastic hollow
cylinder in Fig. 8. But for thermally insulated mode, the specific loss is getting
oscillating trend up to |ς| ≤ 0.7. On comparison of Fig. 8 and 9 it is clear that the
specific loss factor is quiet high when the wave penetrates deep in to the medium.

Fig. 10 and 11 represents the variation of the thermo mechanical coupling
(
κ2

)
factor with non–dimensional wave number |ς| for isothermal and thermally insulated
fluid filled and immersed piezo–thermo elastic hollow cylinder. The magnitude of
the coupling factor increasing monotonically at small wave number and become
steady for higher wave number for both isothermal and thermally insulated bound-
aries. The effect of thermo mechanical coupling factor is high at lower wave number
because of the dissipation of energy is more sensitive on the surface of the hollow
cylinder.

8. Conclusions

The dispersion equation of a transversely isotropic piezo–thermo elastic cylinder
that is fluid-filled and immersed in fluid is developed from the three-dimensional
equations of elasticity and the assumptions of perfect–slip boundary conditions at
the solid fluid interfaces. The frequency equations are obtained for longitudinal and
flexural modes of vibration and are studied numerically for the material PZT-5A,
which is fluid–filled and immersed in fluid. The computed dimensionless frequency,
phase velocity, attenuation, thermo mechanical coupling factor and specific loss are
plotted in the form of dispersion curves for the material PZT-5A. Discarding the
fluid medium and thermo coupling, a comparison is made between the frequency
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response of a piezoelectric solid circular cylinder with the existing literature results
of Paul and Raju [31], which shows very good agreement. The obtained results
are valuable for the analysis of design of piezo thermo elastic transducer and sen-
sors using composite materials and can be utilized in electronics and navigation
applications.
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