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The present work is devoted to study the effect of hydrostatic initial stress in an infinite
isotropic generalized thermoelastic medium with the dependence of modulus of elasticity
and thermal conductivity on the reference temperature. In view of calculating general
problems, a numerical solution technique is to be used. For this purpose , the normal
mode analysis method is chosen. The results for the displacement components, force
stress and temperature distribution are illustrated graphically with some comparisons.
The numerical results are given and presented graphically for Lord–Shulman theory of
thermoelasticity when mechanical force is applied.

Keywords: thermoelasticity, hydrostatic initial stress, internal heat source, normal–
mode, modulus of elasticity, thermal conductivity.

1. Introduction

In recent years increasing attention has been directed towards the generalized theory
of thermoelasticity, which was found to give more realistic results than the coupled
or uncoupled theories of thermoelasticity, especially when short–time effects or step
temperature gradients are considered. The absence of any elasticity term in the
heat conduction equation for uncoupled thermoelasticity appears to be unrealistic,
since due to the mechanical loading of an elastic, the strain so produced causes
variation in the temperature field. Moreover, the parabolic type of heat conduction
equation results in an infinite velocity of the strain–rate term in the uncoupled heat
conduction equation. Biot [1] extended the analysis to incorporate coupled ther-
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moelasticity. In this way, although the first shortcoming was over, there remained
the parabolic–type partial differential equation of heat conduction, which leads to
the paradox of the infinite velocity of the thermal wave.

To take care of the paradox in Biot’s theory, Kaliski [2] proposed a possible
physical model, involving a finite velocity of heat propagation as actually required
in nature. Lord and Shulman [3] developed a theory in which they modified the
Fourier’s law of heat conduction with the introduction of a thermal relaxation time
parameter. The theory of generalized thermoelasticity with two relaxation times
was first introduced by Muller [4]. A more explicit version was then introduced by
Green and Laws [5], Green and Lindsay [6] and independently by Suhubi [7]. In
this theory, the temperature rates are considered among the consecutive variables.
This theory also predicts finite speeds of propagation as in Lord and Shulman’s
theory of generalized thermoelasticity with one relaxation time [3]. It differs from
the latter in that Fourier’s law of heat conduction is not violated if the body under
consideration has a center of symmetry.

A generalized thermoelastic problem in an infinite cylinder under initial stress
has been discussed by El–Naggar and Abd–Alla [8]. because of the inclusion of
thermal relaxation parameters, the basic governing equations involved in the gen-
eralized theories of thermoelasticity are all of hyperbolic type differential equa-
tion and these theories are also referred to as hyperbolic thermoelasticity theo-
ries(Chandrasekharaiah [9]). Chandrasekharaiah [10] studied free plane harmonic
waves without energy dissipation in an unbounded body. Chandrasekharaiah and
Srinath[11, 12] have studied cylinderical/spherical waves due to:

1. a load applied to the boundary of the cylindrical/spherical cavity in an un-
bounded body,

2. a line/point heat source in an unbounded body.

Sharma and Chauhan[13] tackled a problem on thermoelastic interaction without
energy dissipation due to body forces and heat sources. Recently Green and Nagdhi
[14–16] and chandrasekharaiah [17] have formulated three different models of ther-
moelasticity in an alternative way. Mukhopadhyay [18] dealt with a problem con-
cerning the thermoelastic interactions without energy dissipation in an unbounded
medium with a spherical cavity subjected to a thermal shock.

Initial stresses in solids have significant influence on the mechanical response of
the material from an initially–stressed configuration and have applications in geo-
physics, engineering structures and in the behaviour of soft biological tissues. Initial
stress arises from processes, such as manufacturing or growth, and is present in the
absence of applied loads. Montanaro [19] formulated the isotropic thermoelasticity
with hydrostatic initial stress. Singh et al.[20], Othman et al. [21]. Singh [22], and
many others have applied Mantanro [19] theory to study the plane harmonic waves
in context of generalized thermoelasticity.

Modern structure elements are often subjected to temperature changes of such
magnitude that their materials properties may no longer be regarded as having
constant values even in approximate sense. The thermal and mechanical properties
of materials vary with temperature, so that the temperature dependence of mate-
rial properties must be taken into consideration in the thermal stress analysis of
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these elements, Youssef [23] constructed a model of the dependence of the modu-
lus of elasticity and thermal conductivity on the reference temperature and solved
a problem of an infinite material with a spherical cavity. Ezzat et al. [24] stud-
ied generalized thermoelasticity with temperature dependent modulus of elasticity
under three theories. Tianhu and Shuanhu [25] studied the effect of temperature–
dependent properties on thermoelastic problems with thermal relaxation. Chakra-
vorty and Chakravorty [26] discussed the transient disturbances in a relaxing ther-
moelastic half space due to moving stable internal heat source. Kumar and Devi [27]
studied thermomechanical interactions in porous generalized thermoelastic material
permeated with heat source. Lotfy [28] have studied the transient disturbance in a
half–space under generalized magneto–thermoelasticity with a stable internal heat
source. Lotfy [29] discussed the transient thermo-elastic disturbances in a visco–
elastic semi–space due to moving internal heat source. Othman [30] studied the
state space approach to generalized thermoelastic problem with temperature elastic
moduli and internal heat source.

The present paper is concerned with the investigations related to effect of hydro-
static initial stress and temperature rate dependent material in an infinite isotropic
generalized thermoelastic medium with internal heat source. The normal mode
analysis is used to obtain the exact expressions for the considered variables. The
distributions of the considered variables are represented graphically.

2. Formation of the problem

We consider an infinite isotropic generalized thermoelastic medium with the depen-
dence of modulus of elasticity and thermal conductivity on the reference tempera-
ture under hydrostatic initial stress. All quantities considered are functions of the
time variable t and of the coordinates x and y.

A rectangular cartesian coordinate system (x, y, t) having origin on the surface
y= 0 and y–axis pointing normally into the medium is introduced. We assume the
displacement vector as

−→u (x, y, t) = (u1, u2, 0) (1)

To analyze the displacement components, stresses and temperature distribution at
the interior of the medium, the continuum is divided into two half spaces defined
by:

1. half space I |x| <∞, −∞<y ≤ 0, |z| <∞,

2. half space II |x| <∞, 0 ≤ y<∞, |z| <∞,

if we restrict our analysis to the plane strain parallel to xy-plane with displacement
vector −→u= (u1, u2, 0), then the field equations and constitutive relations for such a
medium in the absence of body forces are written as:

∂ t11
∂ x

+
∂ t12
∂ y

=ρ
∂2u1
∂ t2

(2)

∂ t21
∂ x

+
∂ t22
∂ y

=ρ
∂2u2
∂ t2

(3)
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where:

t11= −p+(λ+2)
∂ u1
∂ x

+λ
∂ u2
∂ y
−ϑ(1+ϑ0

∂

∂ t
)T (4)

t12= (µ−p
2
)
∂ u2
∂ x

+(µ+
p

2
)
∂ u1
∂ y

(5)

t21= (µ+
p

2
)
∂ u2
∂ x

+(µ−p
2
)
∂ u1
∂ y

(6)

t22= −p+λ
∂ u1
∂ x

+(λ+2µ)
∂ u2
∂ y
−ϑ(1+ϑ0

∂

∂ t
)T (7)

where ϑ= (3λ+2µ)αt.
Using equations (4)–(7) in equations (2)–(3) we obtain:

(λ+2µ)
∂2u1
∂ x2

+(µ−p
2
)
∂2u1
∂ y2

+(λ+µ+
p

2
)
∂2u2
∂ x∂ y

−ϑ(1+ϑ0
∂

∂ t
)
∂ T

∂ x
=ρ

∂2u1
∂ t2

(8)

(λ+µ+
p

2
)
∂2u1
∂ x∂ y

+(µ−p
2
)
∂2u2
∂ x2

+(λ+2µ)
∂2u2
∂ y2

−ϑ(1+ϑ0
∂

∂ t
)
∂ T

∂ y
=ρ

∂2u2
∂ t2

(9)

The heat conduction equation is given by:

K∗(n∗+t1
∂

∂ t
)(
∂2T

∂ x2
+
∂2T

∂ y2
) =ρC∗(n1

∂

∂ t
+τ0

∂2

∂ t2
)T

+ϑT0(n1
∂

∂ t
+τ0n0

∂2

∂ t2
)(
∂ u1
∂ x

+
∂ u2
∂ y

)− (n1+n0τ0
∂

∂ t
)Q (10)

The use of thermal relaxation times τ0, ϑ0 and the parameters n∗, n1 and n0 helps
to make the above mentioned fundamental equations possible for three different
theories as:

L–S theory due to internal heat source, when:

n∗=n1=n0= 1 t1=ϑ0= 0, τ0> 0 (11)

G–L theory due to internal heat source, when:

n∗=n1= 1 n0= 0 t1= 0, ϑ0 ≥ τ0> 0 (12)

where ϑ0, τ0 are the two relaxation times.
Our aim is to investigate the effect of temperature dependence of modulus of

elasticity keeping the other elastic and thermal parameters as constant. Therefore
we may assume:

λ=λ0(1−α∗T0) µ=µ0(1−α∗T0) α=α0(1−α∗T0) p=p0(1−α∗T0)

(13)

K=K0(1−α∗T0) k∗=k∗0(1−α∗T0) ϑ=ϑ0(1−α∗T0)
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where λ0, µ0, α0, p0, K0, k
∗
0 , ϑ0 are considered constants, α∗ is called empirical

material constant, in case of the reference temperature independent of elasticity
moduli and thermal conductivity α∗= 0.

To facilitate the solution, following dimensionless quantities are introduced:

{x
′
, y

′
}=ω

∗

c1
{x, y} {u

′

1, u
′

2}=
ρc1ω

∗

τTo
{u1, u2} T

′
=
T

T0
t
′

ij=
tij
ϑTo

(14)

t
′
=ω∗t t

′

1=ω
∗t1 τ

′

0=ω
∗τ0 ϑ

′

0=ω
∗ϑ0 p

′
=

p

ϑT0
Q

′

0=
1

λω∗Q0

where:

c21=
(λ+2µ)

ρ
ω∗=

ρC∗c21
K∗

1

Using the expression relating displacement components u1(x, y, t) and u2(x, y, t)
to the scalar potential functions ϕ(x, y, t) and ψ(x, y, t) in dimensionless form:

u1=
∂ ϕ

∂ x
−∂ ψ
∂ y

u2=
∂ ϕ

∂ y
+
∂ ψ

∂ x
(15)

Equations (8)–(10), with the help of equations (13)–(15) may be recast into
dimensionless form after suppressing the primes as:

(
∂2

∂ x2
+

∂2

∂ y2
−A∗ ∂2

∂ t2
)ϕ−(1+ϑ0

∂

∂ t
)T= 0 (16)

(ζ2
∂2

∂ x2
+ζ2

∂2

∂ y2
−A∗ ∂2

∂ t2
)ψ= 0 (17)

(n∗+t1
∂

∂ t
)(

∂2

∂ y2
+

∂2

∂ x2
)T= (n1

∂

∂ t
+τ0

∂2

∂ t2
)T

(18)

+ζ3(n1
∂

∂ t
+τ0n0

∂2

∂ t2
)(

∂2

∂ y2
+

∂2

∂ x2
)ϕ−ζ4(n1+n0τ0

∂

∂ t
)Q

3. Normal mode analysis

The solution of the considered physical variable can be decomposed in terms of
normal modes as the following form:

[ϕ, ψ, T, tij ](x, y, t) = [ϕ, ψ, T , tij ](y)e
(ωt+iax) (19)

Q=Q0e
(ωt+iax) Q=Q0 (20)

where [ϕ, ψ, T , tij ] are the magnitude of the functions, ω is the complex time con-
stant and a is the wave number in x–direction and Q0 is the magnitude of stable
internal heat source.

Using (19)–(20), in equations (16)–(18) we obtain:
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[∇2−ζ8]ϕ−ζ9T= 0 (21)

[ζ7∇2−ζ7a2]ϕ−[ζ5∇2−ζ5a2−ζ6]T=εQ0 (22)

[ζ2(∇2−ζ2)−A∗ω2]ψ= 0 (23)

where:

ζ1= (λ+µ+
ϑT0p

2
)
1

ρc21
ζ2= (µ−ϑT0p

2
)
1

ρc21
ζ3=

ϑ2T0
ρK∗ω∗ ζ4=

λc21
ω∗K∗

ζ5= (n∗+t1ω) ζ6= (n1ω+τ0ω
2) ζ7=a3(n1ω+n0τ0ω

2) ζ8= (a2+A∗ω2)

ζ9= (1+ϑ0ω) ζ10=
λ

ρc21
ζ11= (µ+

ϑT0p

2
)
1

ρc21
(24)

with:

A∗=
1

(1−α∗T0)

Eliminating T from equations (21)–(22) we obtain:

[∇4−λ1∇2+λ2](ϕ(y)) =εζ9Q0 (25)

where:

∇= d

dy

λ1= (ζ5a
2+ζ6+ζ5ζ9+ζ7ζ9)

λ2= (a2(ζ5ζ8+ζ7ζ9)+ζ6ζ8)

The solution of equation (25) is given by:

ϕ(y) =

2∑
j=1

Sj(a, ω)e
−kjy+

2∑
j=1

Rj(a, ω)e
kjy+f1 (26)

In a similar way, we get

T (y) =
2∑

j=1

ξ∗jSj(a, ω)e
−kjy+

2∑
j=1

ξ∗jRj(a, ω)e
kjy+f2 (27)

The solution of equation (23) is given by:

ψ(y) =S3(a, ω)e
−k3y+R3(a, ω)e

k3y (28)

where:

f1=
εζ9Q0

ζ9
f2=

εQ0(k
2
j−ζ8)
ζ5

k23=
ζ2a

2+A∗ω2

ζ2
ξ∗j=

k2j−ζ8
ζ9

j= 1, 2 (29)

where Sj(a, ω), Rj(a, ω) are some parameters depending on a and ω; k2j (j= 1, 2)
are the roots of the characteristic equation (21).
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4. Applications

The boundary conditions at the interface y= 0 subjected to an arbitrary normal
force P1 are:

1. t22(x, 0
+, t)−t22(x, 0−, t) = −P1e

(ωt+iax)

2. t21(x, 0
+)−t21(x, 0−) = 0

3. u1(x, 0
+) =u1(x, 0

−)

4. u2(x, 0
+) =u2(x, 0

−) (30)

5. v)T (x, 0+) =T (x, 0−)

6.
∂ T

∂ y
(x, 0+) =

∂ T

∂ y
(x, 0−)

where P1 is the magnitude of mechanical force. Using equations(14) and (6)–(7)
on the non–dimensional boundary conditions and then using (26)–(28), we get the
expressions of displacement, force stress and temperature distributions for isotropic
generalized thermoelastic medium as:

u1={
2∑

j=1

iaSj(a, ω)e
−kjy+

2∑
j=1

iaRj(a, ω)e
kjy

(31)

+k3S3e
−k3y−k3R3e

k3y}e(ωt+iax)+iaf1

u2={−
2∑

j=1

kjSj(a, ω)e
−kjy+

2∑
j=1

kjRj(a, ω)e
kjy

(32)

+iaS3e
−k3y+iaR3e

k3y}e(ωt+iax)

t22={
2∑

j=1

β∗
jSj(a, ω)e

−kjy+
2∑

j=1

β∗
jRj(a, ω)e

kjy+L1S3e
−k3y

(33)

−N1R3e
k3y}e(ωt+iax)+L2

t21={
2∑

j=1

γ∗jSj(a, ω)e
−kjy−

2∑
j=1

γ∗jRj(a, ω)e
kjy

(34)

+L3S3e
−k3y+L3R3e

k3y}e(ωt+iax)

T={
2∑

j=1

ξ∗jSj(a, ω)e
−kjy+

2∑
j=1

ξ∗jRj(a, ω)e
kjy}e(ωt+iax)+f2 (35)



270 Ailawalia, P. and Budhiraja, S.

where:
β∗
j= (k2j−a2a11−a9a∗j ) γ∗j=iakj(a12−a2) L1=iak3(ξ13−1)

L2=a
2a11f1−a9f2 L3=iak3(a2+a12)

Invoking the boundary conditions (30) at the surface y= 0, we obtain a system of
six equations, and applying the inverse of matrix method, we obtain the values of
six constants Rj and Sj , j= 1, 2, 3, as:

R1=
∆1

∆
, R2=

∆2

∆
, R3=

∆3

∆
, S1=

∆4

∆
, S2=

∆5

∆
, S3=

∆6

∆
.

where ∆, ∆i, i= 1, 2, 3, .., 6. are defined in appendix A.

5. Particular cases

5.1. Isotropic generalized thermoelastic medium with internal heat source

Letting p → 0, in the system of equations (26)–(28), we obtain the components
of displacements, force stress and temperature distribution in isotropic generalized
thermoelastic medium with internal heat source and temperature rate dependent
material .

For all the cases discussed above the components of displacement, stresses and
temperature distribution for the region −∞<y ≤ 0 , are obtained by inserting
R1 =R2 =R3 = 0 in Eqs. (31)–(35).

Similarly for the region 0 ≤ y <∞, the components are obtained by inserting
S1 =S2 =S3 = 0 in Eqs. (31)–(35).

Taking α∗= 0, we obtain the corresponding expressions in isotropic generalized
thermoelastic half-space with internal heat sourse under hydrostatic initial stress.

6. Numerical results

To study the effect of initial stress and temperature-dependent material, we now
present some numerical results. For this purpose, the values of physical constants
are taken as Sharma [31]:

λ= 8.2× 1010Nm−2 µ= 4.2× 1010Nm−2 ρ= 8.950× 103kgm−3

K∗= 1.13× 102calm−1s−1K−1 αT= 1.0× 10−8K T0= 300K

ω∗= 4.347× 1013sec−1

The comparison are carried out for: α∗= 0.051/K. The computations are carried
out for the value of non–dimensional time t= 0.1 in the range 0 ≤ x ≤ 10 and
on the surface y= 1.0. Using this data the value of the physical quantities are
evaluated and absolute values of displacement, force stress, temperature distribution
are plotted in Figs. 1-3 in the context of the L–S theory for mechanical force with
P1 = 1.0, p= 2.0, ω=ω0+iζ, ω0 = 2.3, ζ = 0.1, a= 2.1 and Q0 = 10 for an:

(a) Isotropic generalized thermoelastic medium with hydrostatic initial stress
and temperature rate dependent property (IGTHTD)by solid line.

(b) Isotropic generalized thermoelastic medium with hydrostatic initial stress
and temperature rate independent propety(IGTHTI) by solid line with centered
symbol (*).
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(c) Isotropic generalized thermoelastic medium without hydrostatic initial stress
and with temperature rate dependent property(IGTWHTD) by dashed line.

(d) Isotropic generalized thermoelastic medium(IGTWHTI) by dashed line with
centered symbol (*).

These graphical results represent the solutions obtained for the generalized the-
ory with one relaxation time (L-S-theory) by taking τ0 = 0.02.

Figure 1 Variations of normal displacement u2 with distance x

7. Discussions

Fig. 1 depicts the variations of normal displacement u2 with distance x. The vari-
ations of normal displacement u2 for IGTHTD and IGTHTI show similar patterns
with different degree of sharpness. i.e. the values for IGTHTD and IGTHTI in-
creases and decreases alternately with distance x. The value of normal displacement
u2 for IGTWHTI lie in a very short range. Further normal displacement u2 shows
small variations near to zero value in the whole range for IGTWHTD.

Fig. 2 depicts the variations of normal force stress t22 with distance x. The
pattern observed for IGTHTD and IGTWHTI are opposite in nature near the point
of application of source. The value of t22 for IGTWHTD decreases, then follow an
oscillatory pattern with decreasing magnitude. It is also noticed that IGTHTI show
small variations about origin.

The variations of temperature distribution T with distance x is depicted in
Fig. 3. It is interesting to observe from Fig. 3, that the behaviour of variations of
temperature distribution T with reference to x is same i.e. oscillatory for (IGTHTD,
IGTHTI) with difference in their magnitude.
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Figure 2 Variations of normal force stress t22 with distance x

Figure 3 Variations of temparature distribution T with distance x
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8. Conclusion

In this paper, we have investigated the effect of hydrostatic initial stress in an
infinite isotropic generalized thermoelastic medium of temperature-dependent ma-
terials with internal heat source. The problem has been solved numerically using
a normal mode analysis. The difference of the field quantities predicted by LS
theory are remarkable in the presence and absence of hydrostatic initial stress and
temperature-dependent materials. A parameters of hydrostatic initial stress and
temperature-dependent materials have a great effect on the distribution of field
quantities. The results obtained in this article may offer a theoretical basis and
used in engineering, seismology and geophysics.
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Nomenclature
λ, µ: Lame’s constants
ρ: density
C∗: specific heat at constant strain
←−u : Displacement vector
tij : stress tensor
τ0: relaxation time
t: time
T : absolute temperature
K∗: thermal conductivity
T0: reference temperature chosen so that |(T−T0)/T0| < 1
αt: coefficient of linear thermal expansion

APPENDIX A:

∆=G1(D1−D2) ∆1=G1G2, ∆2=G1G3 ∆3=G1G4

∆4=F1G2 ∆5=F2G2 ∆6=F3G2

where:

D1=ξ1(β2k3−iaL1)−ξ2(β1k3−iaL1)

D2=ξ1(iaL1−β2k3)−ξ2(iaL1−β1k3)
G1=k1a1(iaγ2−L3k2)+k2a2(iaγ1+L3k1)

G2=ia(f1ξ2−f2)−k3(N1ξ2+β2f2)

G3=ξ1(N1k3+iag1L1)+f2(β1k3−iaL1)

G4=β1ia(f2−f1ξ2)+β2ia(f2−f1ξ1)+iaN1(ξ2−ξ1)
F1=f2(iaL1−β2k3)−ξ2(N1k3+iaf1L1)

F2=ξ1(N1k3+iaf1L1)−f2(iaL1−β1k3)
F3=iaβ1(f2−ξ2f1)+iaβ2(f2−ξ1f1)+iaN1(ξ2−ξ1)
N1= −P1+L2e

−(ωt+iax)




