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A methodology for hybrid modeling and FEM analysis of body collision is presented and
illustrated by a simplified, theoretical example. Each step required to use the presented
approach in engineering practice is described and methods of checking the correctness
of conducted FEM analysis are given. The influence of colliding body configuration on
the value of maximal collision force is studied and discussed. The results of FEM anal-
ysis, using the suggested approach, supported by free software, are presented and their
correctness is verified by proposed checking methods. Advantages and disadvantages of
the proposed approach are also discussed.
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1. Introduction

An eccentric collision between colliding bodies occurs when mass centers of one of
the colliding body or both of them do not lie on the impact line. It is a straight line
which passes through a contact point and is normal to plane tangential to surfaces of
colliding bodies in the contact point, so it is, in case of absence of friction, collinear
with F1 and F2 vectors shown in Fig 1. Eccentric collisions can be found in nature,
i.e. in astrophysics - asteroids hitting planets or rubble pile asteroids collisions, as
well as in technical and industrial processes, i.e. a collision between an axle set of
a rail–vehicle and a unevenness of a track [1], an aircraft landing, a shakeout of
solidified castings when removing from sand molds etc. It is often recognized in
industries like defense, mining or building.

A collision is complex dynamic phenomenon, the modeling and simulation of
which requires taking many properties of colliding bodies, such as material, geom-
etry and velocity, into consideration. Approaches for the modeling collision at the
actual state of the art can be divided into impulse-momentum and time dependent.
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In the first approach the collision time is neglected and the concept of the resti-
tution coefficient, for calculating kinematic quantities of colliding bodies, is used.
There are various methods of defining the coefficient of restitution: Newton’s defin-
ing relationship between the normal components of the velocities before and after
the collision at the contact point [2], Poisson’s defining relationship between force
impulse in compression and restitution phases of the collision [3] and Stronge’s use
of square root of the ratio of energy released during restitution phase to the energy
absorbed during the compression phase of collision [4]. Because the coefficient of
restitution shows the dependence on the body shape in the region of collision, their
mass and velocity it is convenient to use the concept of energy flux density proposed
for the central collision by Bagrejev [5]. The energy flux density Φ combines factors
that influence the value of restitution coefficient mentioned in previous sentence
(refer Eq. (14)) An empirically determined relation between the value of restitution
coefficient and energy flux density Φ is useful for determining the value of restitution
coefficient in a particular collision case. The time dependent models are describing
an explicit relation between local deformation and forces acting on the colliding
bodies. The loss of kinetic energy during the collision in time dependent models
can be modeled by damping.

Figure 1 Eccentric collision of two bodies

This paper proposes a hybrid approach for modeling and simulating an eccentric
collision of bodies. The meaning of “hybrid” can be understood on two levels: the
first - it combines impulse-momentum and time dependent modelling of collision
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in analytical calculations and the second - it combines analytical calculations with
FEM analysis.

Hertz’s contact model is used for determining force impulse in the collision com-
pression phase. The concept of energy flux density [5] generalized in [6] is used for
determining the restitution coefficient and the calculating impulse of force in the
collision restitution phase. The maximal collision force dependence on the colliding
body configuration is studied in the case of sphere colliding with ellipsoid. Cal-
culated force functions are used in FEM analysis to present approach of removing
one of colliding bodies from analysis and replacing it with directly applied, time
dependent force. The analytical validation of the FEM results is presented. The
results of an example analysis as well as advantages and potential disadvantages of
proposed hybrid methodology are discussed.

2. Methodology

2.1. Calculating force impulse in the compression phase for the central
collision

Hertz’s-Stayerman’s nonlinear spring model Eq. (1) is used as a starting point for
the calculation of force impulse in the collision compression phase.

P = kHxn (1)

Figure 2 Central collision of two spheres

Constants kH and n in Eq. (1) are depending on material and geometric properties
of colliding bodies and can be calculated on the basis of elastostatic theory. Hertz–
Stayerman model assumes that deformation occurs only in an area near the contact
point and neglects elastic wave motion. Therefore, a description of interaction
between colliding bodies via non–linear spring which is acting along the line of
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impact, is possible. Using this model, a description of the motion of the two spheres
presented in Fig. 2 leads to Eq. (2).

mwẍ+ kHxn = 0 (2)

where: m1, m2 – masses of colliding spheres:

mw =
m1m2

m1 +m2
(3)

x = x1 − x2 − (r1 + r2) (4)

ẋ = ẋ1 − ẋ2 (5)

ẍ = ẍ1 − ẍ2 (6)

Because of the nonlinearity of Eq. (2) there is no possibility for an easy and
straightforward analytical solution, which will describe the changes of x in time.
Therefore, in order to be able to describe it, the steps represented by Eq. (7) to (9)
are taken.

d

dt
(ẋ2) = 2ẋẍ = −2ẋ

kHxn

mw
(7)

Multiplying by dt and integrating leads to Eq. (8) :

ẋ =

√
v20 −

2kHxn

mw
xn+1 (8)

After separating the variables, integrating again and taking into consideration
the initial conditions x(0) = 0 Eq. (9) can be received:∫

1√
v20 − 2kHxn

mw
xn+1

dx = t (9)

Introducing new variable:

z +
x

xmax

and using special functions to describe the integral on the left side of Eq. (9), Eq.
(10) can be written as:

t =
v0

xmax
z 2F1

(
1

2
,

1

n+ 1
, 1 +

1

n+ 1
, zn+1

)
(10)

where:
z ∈< 0, 1 > (11)

and

2F1

(
1

2
,

1

n+ 1
, 1 +

1

n+ 1
, zn+1

)
(12)

represents the hypergeometric series.
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Figure 3 Relation of collision force against time

Using numerical methods, an inverse relation to Eq. (10) can be found and thus
the relation of displacement during the collision against time can be determined.
It is always possible as the function described by Eq. (10) is monotonic in its
domain. Substituting this relation to Eq. (1) gives the relation of collision force
against time. Determining the area beneath this relation as shown in Fig. 3 allows
for determining force impulse Π1 during the collision compression phase. Because
of the energy transformations during the collision, an impulse Π2, restored during
the restitution process, will be smaller than the impulse Π1. According to Poisson
hypothesis, the correlation between the impulse Π1 and the impulse Π2 can be
described using the coefficient of restitution, as shown in Eq. (13).

Π2 = RΠ1 (13)

In general, the coefficient of restitution is not a constant value but shows a de-
pendence on the velocity, mass and shape of the colliding bodies in the vicinity of
the contact area. To determine the value of the coefficient of restitution in a spe-
cific collision, it is convenient to use the energy flux density Φ during the collision,
proposed for central collinear collision in [5].

Φ =
mwv

2
w

2r3w
(14)

where:
mw – reduced mass of colliding bodies, Eq. (3)
vw – relative velocity of colliding bodies prior to collision (ẋ1 − ẋ2 for t = 0)
rw – reduced radius of curvature in the contact point determined from Eq. (15)

rw =
rirj

ri + rj
(15)

Using an empirical relation between the coefficient of restitution R against the
density of energy flux Φ and calculating an impulse during compression phase Π1 it
is possible to calculate impulse during restitution phase Π2. The knowledge about
total impulse during the collision Π = Π1+Π2 = Π1+RΠ1, where R is the coefficient
of restitution, enables calculation of the kinematic parameters of the bodies after
the collision.
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2.2. Generalization about eccentric collision

To apply the approach presented in paragraph 2.1 for eccentric collision, the method-
ology proposed in [6] is used. It allows for the calculation of reduced mass at the
collision point using Eq. (21). The starting point for calculating the reduced mass
is the Euler Eq. (16). Refer to Fig. 1 for a better symbol understanding.

Ii
dωi

dt
+ ωi × Iiωi = Mci + ri × F (16)

where:

i = 1, 2 – index describing colliding bodies

Ii – tensor of inertia in the central reference frame Cixiyizi of i–th body

Mci – external moment applied to body mi

Ii =

 Ixi −Ixiyi Ixizi

−Iyixi Iyi −Iyizi

Izixi Iziyi Izi

 (17)

Eq. (16) allows for determination of the derivative of angular velocity, which
can be then substituted into Eq. (18) describing the acceleration of point Oi.

aOi
=

Fi + Fci

mi
+

dωi

dt
× ri + ω × (ωi × ri) (18)

After substituting the derivative of angular velocity calculated from Eq.(16) into
Eq. (18), neglecting limited value terms and getting the projection of acceleration
aOi against the direction of the collision line, Eq. (19) can be written as:

ani = aOi
ni =

{
Fi

mi
+ [I−1

i (ri × Fi)]× ri

}
ni

(19)

= Fi

{
ni

mi
+ [I−1

i (ri × ni)]× ri

}
ni

Hence, the term presented by Eq. (20) can be considered:

mwi =
Fi

ani
=

1{
ni

mi
+ [I−1

i (ri × ni)]× ri

}
ni

i = 1, 2 (20)

After substituting Eq. (20) into Eq. (3) for both colliding bodies and assuming
that xi, yi, zi are the central principal axes of inertia of both colliding bodies,
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Eq. (21) can be written.

mw =
mw1mw2

mw1 +mw2
=

[
1

mw1
+

1

mw2

]−1

=

[
1

m1
+

1

m2
+

1

Ix1
(z1On1j1 − y1On1k1)

2

+
1

Iy1
(z1On1i1 − x1On1k1)

2 +
1

Iz1
(y1On1i1 − x1On1j1)

2 (21)

+
1

Ix2
(z2On2j2 − y2On2k2)

2 +
1

Iy2
(z2On2i2 − x2On2k2)

2

+
1

Iz2
(y2On2i2 − x2On2j2)

2

]−1

where:

ni – versors of line of impact, i = 1, 2

ii, ji, ki – versors of central principal axes of inertia, i = 1, 2

xiO, yiO, ziO – coordinates of point O, i = 1, 2

Ixi, Iyi, Izi – central principal moments of inertia, i = 1, 2.

Therefore, Eq. (21) can replace Eq. (3) in paragraph 2.1 allowing for the
calculation of the collision impulse in the eccentric collision. The reduced mass of
the colliding bodies, calculated form Eq. (21), can also be used in Eq. (14) for
calculation of the energy flux during the collision, which is needed to determine the
coefficient of restitution.

Consider two bodies colliding as shown in Fig. 1. Both of them have no dis-
placement constraints except for the fact that they are impenetrable at point O,
where the contact occurs. The bodies have mass centers located at Oi , masses mi

and inertia tensors Ii, i = 1, 2. Vector ri locates point O respectively from Oi.
Let vi be the linear velocity of the mass center and ωi the corresponding angular
velocity. Knowing the impulse Πi, changes of linear and angular velocity can be
presented as follows:

∆v1 =
Πi

mi
(22)

∆ωi = I−1
i rixΠi) (23)

2.3. Numerical simulation

Maximal force during the eccentric collision depends on the configuration of the
colliding bodies to each other. For the investigation of the influence of colliding
bodies configuration on maximal force during collision, a numerical simulation, using
Python and freely available libraries, is implemented. To allow parametrization of a
study, it has been decided to choose a shape, which can be described by an analytical
equation. For its generality, an ellipsoid, described by Eq. (24) has been used:
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x2

a2
+

y2

b2
+

z2

c2
= 1 (24)

where:

x, y, z – coordinates of Cartesian coordinate system

a, b, c – semi–principal axes of an ellipsoid

For given values of semi principal axes, the simulation automatically generates
a cloud of points on its surface and stores them in matrix. At each of these points,
the value of maximal force during collision with a sphere is determined. The sphere
is always hitting along the line normal to an ellipsoid at the contact point. The
versor of this line is determined from Eq. (25).

n =
1√

4x2
0

a4 +
4y2

0

b4 +
4z2

0

c4

[
2x0

a2
,
2y0
b2

,
2z0
c2

]
(25)

where:

x0, y0, z 0 – collision point coordinates

The friction during the collision is neglected. The parameters of the ellipsoid and
sphere, needed for the calculation, can be easily defined as variables. Therefore,
an effort needed to define material properties, velocities, masses etc. for both the
ellipsoid and sphere is limited. The created simulation has the ability to graphically
represent the results on a wireframe created in 3D space. The maximal collision
force is represented by a circle having its central point at the collision point. The
radius of this circle is proportional to the value of the maximal collision force at
this point. Additionally, its color is darker with a decreasing value of the maximal
collision force. An example of such a graphical representation is shown in Fig. 4.
The results presented in this Figure are discussed in the concluding paragraph.

Figure 4 Example of a graphical representation implemented in a numerical simulation

For a determination of the Hertz constant (kH in Eq. (1)) it is assumed, that the
ellipsoid surface near the contact point can be approximated by a sphere. The
radius of such a sphere is calculated as an average of the radiuses at the contact
point of ellipses, created by cutting the ellipsoid with planes normal to the axes of
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the main coordinate system and passing through the collision point. The radius of
such an ellipse at the contact point can be evaluated from Eq. (26).

1

R
=

αβ

(α2 sin2 γ + β2 cos2 γ)
3
2

(26)

where:
R – radius of the ellipse at a given point
α, ß – semi- principal axes of the ellipse created by cutting the ellipsoid with a plane
perpendicular to one of main coordinate system axes,
γ – independent parameter having values from 0 to 2π

Simulation then uses Eq. (27) to separately determine the Hertz constant at
each collision point:

kH =
4

3
Ered

√
Rred (27)

where:
Ered – reduced Young modulus, calculated from Eq. (28)
Rred – reduced Radius, calculated from Eq. (15)

1

Ered
=

1

Eellipsoid
+

1

Esphere
(28)

where:
Eellipsoid– Young modulus of the material from which the ellipsoid is made
Esphere – Young modulus of the material from which the sphere is made

1

Rred
=

1

R
+

1

r
(29)

where:
R – radius of the sphere approximating the ellipsoid at the collision point
r – radius of the colliding sphere.

A relation of the force against time acting during the collision at specified points
can be evaluated by the simulation. Eq. (10) is used directly at the compression
phase. For the restitution phase, the curve is iteratively approximated. As a base
for this approximation Eq. (10) is taken, giving it physical justification. The param-
eters of this equation are evaluated iteratively. For each iteration an area beneath
the force curve in the restitution phase is calculated and then compared with the
force impulse obtained from Eq. (13). Iterations are stopped, when the difference
is lower than 1%. Additionally, there is a constraint put on the approximated curve
to be continuous with the curve calculated for the compression phase at a point,
where the force reaches its maximal value. An example of the force relation in the
time calculated by simulation is presented in Fig 5.

Coefficient of restitution required in Eq. (13) is calculated separately for each
point using empirical Eq. (30) presented in [7].

R = 0, 55− 0, 047 lnϕ for − 5 < lnϕ < 6 (30)

where:
φ - density of energy flux calculated from Eq. (14).
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Figure 5 Example of relation of force acting during collision in time generated by simulation

At this point it has to be mentioned, that using Eq. (30) is limiting the material,
from which the ellipsoid and sphere can be made of, to steel with a hardness of
1400 HB. To properly simulate the behavior of bodies made from other materials,
a different relation has to be used.

The simulation has implemented two tests for checking the correctness of the
conducted calculations. If one of them is not fulfilled, simulation returns error.

The first test uses the analytically calculated Eq. (31) to get the impulse of
collision force during compression, assuming that the ellipsoid has no angular ve-
locity. This analytical value is then compared with the numerically obtained value
of the collision force impulse during the compression phase, which is obtained by
a numerical integration of the relation similar to this presented in Fig. 5. The
test is passed when the difference between both values is lower than 3 % . This
error threshold is dictated by an error made by the numerical computation and its
purpose is to avoid withdrawing of the correctly calculated values.

Π1 = mwvw (31)

where:
Π1 – impulse of collision force during the compression phase
mw– reduced mass of the ellipsoid and sphere at the collision point, calculated from
Eq. (21)
vw – relative velocity of the colliding bodies at the collision points prior to collision
(vsphere0 − vellipsoid0 for t = 0)

The second test calculates the loss of kinetic energy during collision using the
Carnot theorem and directly using the velocities of the bodies before and after the
collision and subtracting the kinetic energy after collision from the kinetic energy
before collision. If properly calculated both values should be the same. The loss
of energy during collision according to the Carnot theorem is determined from Eq.
(32).

∆E =
1−R2

2
mwv

2
w (32)

To determine kinetic energy loss using velocities of bodies before and after col-
lision, Eq. (22) and (23) are used to obtain changes in linear and angular velocity.
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Simulation compares the value of energy loss obtained from the Carnot theorem
with energy loss calculated directly from the differences and returns error if the
difference is bigger than 1 %. If one of the above tests return error, the simulation
is stopped and the user is required to investigate the reason and causes of the error.

2.4. FEM transient analysis

The solution of dynamic impact problems using finite element software makes an
analyst face several challenges. Contact modeling, for which major part of algo-
rithms, tests and literature is available, concerns quasi-static problems, not suitable
for dynamic analysis, for which an additional time step is required. The necessity
to introduce the contact between colliding bodies adds difficult non linearity into
model. Several issues concerning taking into account the complex collision phenom-
ena, generating proper mesh at area of contact or assessing the performance and
capability of the available algorithms [8] can create difficulties, despite a literature
review delivered in [9]
This article proposes an approach, which can eliminate some of the problems men-
tioned above. The idea is to remove the simulation of the collision contact from the
FEM analysis and replace it with a directly applied collision force relation calculated
by the numerical simulation as described in the paragraph 2.3. Such an approach
has several advantages. It removes nonlinearity related to contact, allows for eas-
ier mesh generation, avoids problems with penetration and shortens the simulation
time as the load is known prior to the simulation.

To present the proposed approach, the transient FEM analysis is conducted.
The behavior of an ellipsoid shaped body hit by a sphere is investigated. This
paragraph describes the applied methods, tools and the definition of analysis.

Figure 6 Geometry read by Gmsh from ASCII file

For 3D mesh generation and displaying the results Gmsh is used. [10] It is a
lightweight, free software meshing tool allowing for parametric input and advanced
visualization. Gmsh allows for an interaction using a graphical user interface or
ASCII text files, containing instructions in Gmsh’s own scripting language. For 3D
mesh generation, for transient analysis the second option is used. The numerical
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simulation described in paragraph 2.3 allows for the export of the geometry to an
ASCII text file, which can then be read by Gmsh. An example of such imported
geometry is presented in Fig. 6. The size of the generated mesh is prescribed in
the input file for each point. The groups of nodes needed for applying the loads
and plotting the graphs are defined manually using a graphical user interface. The
generated mesh, the example of which is presented in Fig. 7, is exported to a file
using MED mesh format, which is then used as an input to the FEM solver.

Figure 7 Mesh generated by Gmsh

To obtain the solution of a given problem, Code Aster, a free software FEM nu-
merical analysis program, is used. It has been developed by the French company
EDF and after years of development has been published under a GNU GPL license.
Code Aster requires two inputs: the first is mesh, providing geometry of the body
to be analyzed and the control file, providing information about the type of anal-
ysis, boundary conditions etc. The first input, mesh, is generated by Gmsh. The
control file is created using text editor (EMACS). It contains instructions specific
for Code Aster. [11] A link between the control file and mesh is established by
named groups of nodes and elements created in the MED file. The force acting
during the collision is exported from the python numerical simulation described in
paragraph 2.3. The curve, presented as an example in Fig. 5, is represented in the
control file as a list of paired value. Each pair of values gives the value of time
and the value of the collision force at that time. The force is always applied at a
direction normal to the ellipsoid surface at a given point. There are no constraints
on the ellipsoid displacement. A default setting of Code Aster specifies calculation
of displacements, velocities and accelerations at the mesh nodes. The control file
additionally specifies von Mieses (Huber) reduced stresses as a required output to
observe the stress levels caused by the collision. The results are written into a MED
file, which can be then loaded into the Gmsh post processing module. Additionally,
graphs are generated for specified nodes and the numerical values are exported into
a text table, which can be read for example by any typical spreadsheet application.
The results obtained from the simulation and read from the MED file into the Gmsh
post processing module are presented in Fig. 8.
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Figure 8 Results imported to Gmsh post processing module

Code Aster is a command line program but it has a graphical manager, ASTK,
which allows for running an analysis and the managing of multiple input and output
files by interaction with a graphical user interface. ASTK is used for managing the
analysis conducted in the scope of this article. To verify the correctness of the FEM
analysis results, the values of the velocities obtained from it are compared with the
values of the velocities, which can be calculated using impulses values obtained from
the numerical simulation as described in the paragraph 2.3.

3. Results

3.1. Influence of body configuration during collision on maximal col-
lision force

The implemented simulation, as described in paragraph 2.3, is used to investigate
how the configuration of colliding bodies influences the maximal collision force. To
eliminate the influence of the relative velocity at the collision point, the angular and
linear velocity of an ellipsoid body is set to 0. This ensures that the relative velocity
will not depend on the location where the ellipsoid body is hit, and will be equal to
the linear velocity of the sphere, which always hits the ellipsoid body along normal
to its surface at the collision point, as shown in Fig 9. A numerical experiment is
structured as shown in Table 1. The impact of geometrical dimensions and colliding
body masses is studied. For the purpose of this experiment, two semi-principal axes
of ellipsoid are set to be equal (b and c) and axis a is changing to describe more
narrow shapes, which vary more and more from a spherical shape, for which the
given ratio equals 1. Additionally, for each geometrical ratio a different relation of
colliding body masses is introduced. It is described by the ratio of the ellipsoid body
mass m1 to the hitting sphere body mass m2. For example, the in cell for which
the geometrical and mass ratio is 1, two spherical bodies with the same masses are
colliding.

A separate calculation is made for each cell in Tab. 1. As described in the
paragraph 2.3, for each parameter set the simulation automatically generates a
cloud of points on the ellipsoid surface. Each calculation then simulates the collision
of the hitting sphere at each of these points and stores the value of the maximal
collision force during a particular collision. (refer Fig. 4) Thus, the number of
the maximal collision force values is equal to the number of points generated on
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the ellipsoid surface. Next, these values are sorted and a ratio of the smallest
collision force value to the biggest collision force value is calculated and entered
into each cell of Tab. 1. In this paper, this value is called collision force ratio. If
the value of this collision force ratio is close to 1, this indicates that the relation
of the particular geometrical dimensions or masses are not strongly influencing the
collision force variation, therefore such a combination can be well approximated
with bodies colliding centrally. An error made by such approximation increases
with a decreasing value of the collision force ratio.

Figure 9 A sphere body hitting an ellipsoid

Table 1 Results of numerical experiment, values of collision force ratio

0.0001 0.001 0.01 0.1 1 10 100 1000 10000
0.0001 0.350 0.350 0.351 0.381 1 0.378 0.345 0.344 0.288
0.001 0.351 0.350 0.351 0.381 1 0.378 0.345 0.344 0.288
0.01 0.352 0.352 0.352 0.382 1 0.379 0.346 0.346 0.288
0.1 0.367 0.367 0.367 0.398 1 0.379 0.361 0.361 0.288
1 0.482 0.482 0.483 0.517 1 0.513 0.476 0.456 0.288
10 0.806 0.806 0.807 0.829 1 0.821 0.699 0.456 0.288
100 0.973 0.973 0.973 0.976 1 0.922 0.699 0.456 0.288
1000 0.997 0.997 0.997 0.996 1 0.922 0.699 0.456 0.288
10000 0.999 0.999 0.999 0.997 1 0.922 0.699 0.456 0.288
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3.2. Analytical verification of numerical simulation

To verify the results of the influence of body configuration during eccentric collision
on the value of maximal impact force obtained from the numerical simulation, a
theoretical case of a smooth ellipsoid of revolution hitting a body of infinite mass
is analyzed. One of the semi principal axes of this ellipsoid is much bigger than the
others, a >> b, c. The two cases shown in Fig. 10 are the subject of analysis. In
both cases the ellipsoid of revolution has only a linear velocity, in first case hitting
centrally and in second case at the end point. For both cases, the maximal collision
force is calculated and then the ratio of the maximal force in eccentric collision to
the maximal force in central collision is obtained. Several assumptions are made
to simplify the calculations. It is assumed that the semi principal axes b and c are
small enough in comparison with the semi principal axis a to neglect their impact
in expressions for calculation of the moment of inertia. It allows, therefore, for a
simplified calculation of the moment of inertia IC as presented in the explanation
of Eq. (34). Additionally, it is assumed that the force F in Case 2 is acting near
the end point of the ellipsoid and is perpendicular to the ellipsoid axis. With the
semi principal axis a going to an infinity, angle between axis x and ξ will go to 0,
which justify such an approximation. Calculating the acceleration of the collision
points in both cases is made at the start point.(Eq. (33) and Eq. (34)) During this
calculation it is assumed, that the mass M is infinite.

Figure 10 Ellipsoid of revolution (spheroid) hitting body with infinite mass
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aC =
F

m
(33)

aA = aC + εa =
F

m
+

Fa2

Ic
(34)

where:

Ic =
ma2

5 – is a inertia moment of the hitting rod

The relation given in Eq. (35) is obtained by simplifying Eq. (34)

aA =
F

mw
(35)

where:

mw = m
6 – is a reduced mass of colliding bodies at the collision point.

For calculation of the maximal force during the collision, the Hertz nonlinear spring
model is used ( Eq. (1) ). The kinetic energy of the reduced system is compared
with the energy stored in the local elastic deformation to obtain the maximal local
deformation during the collision.

1

2
mwv

2
w0 =

∫ ξmax

0

kHξndξ (36)

For central collision (Case 1) mass m is directly used as a reduced mass, for
eccentric collision (Case 2) the expression for reduced mass is given by Eq. (35).
Both values are substituted into Eq. (36) and the integral is evaluated resulting in
Eq. (37) and Eq. (38), which accordingly express the maximal force in the eccentric
and central collision.

F ecentric
max = kH

[
(n+ 1)

2kH

m

6
v2w0

] n
n+1

(37)

F central
max = kH

[
(n+ 1)

2kH
mv2w0

] n
n+1

(38)

The ratio of the maximal force during eccentric collision to the maximal force during
central collision is expressed in Eq. (39):

F ecentric
max

F central
max

=
1

6
n

n+1
(39)

The assumption that mass M is infinite, is an additional constraint put on the
system. To verify what impact allowing mass M to have any value will have on
the calculated ratio, analogical calculations to those presented above have been
conducted and their result is given by Eq. (40):

F ecentric
max

F central
max

=

[
m+M

m+ 6M

] n
n+1

(40)
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It can also be shown, that the value of the ratio calculated from Eq. (40) tends
to the value from Eq. (39) when m

M → 0, which can happen when M is tending to
infinity or m is very small Eq. (41):

lim
m
M →0

[
m+M

m+ 4M

] n
n+1

=
1

6
n

n+1
(41)

For n = 3/2, as used in numerical simulation, Eq. (39) yields a ratio of 0.34,
which is a confirmation of the results of the numerical simulation. It has larger val-
ues then those shown in the last row of Tab. 1, mostly because of the simplification
made, that force F is perpendicular to semi principal axis a.

3.3. Results of the FEM analysis

This paragraph presents the results of the transient FEM analysis as described in
paragraph 2.4. The force relation during the impact is generated by the simulation
described in the paragraph 2.3. The values of the parameters for both analyses are
presented in Table 2. Both the colliding bodies are made from standard carbon
steel. First order tetrahedral elements are used to represent the geometry of an
ellipsoid. The force pictured in Fig. 11 is applied in an opposite direction along the
Y axis at the point of coordinates (0, 500, 0) (refer Fig. 9). There are no constraints
put on the ellipsoid. The total time of the simulation is 0.02 s, the time step is set
to 0.00001 s

Table 2 Parameters used in FEM and python simulation

Parameter description Value of parameter
Radius of hitting sphere 50 mm
Linear velocity of hitting
sphere

400 m/s

Young modulus (for ellip-
soid and sphere)

2.05*105 MPa

Poisson ratio 0.3
Semi principal axes of ellip-
soid

a = 2000 mm, b = 500 mm,
c = 500 mm

The results of the simulation show evolution of stresses or displacements in time
and can be viewed as an animation. Screens from such animation at given time are
presented in Fig. 12 and Fig. 13. Both of these illustrations present reduced von
Mieses stresses at given time. The stresses are given in MPa.

To validate the results of the FEM analysis, the velocity of the ellipsoid after
collision is calculated analytically ( refer Eq. (22) ) and then compared with the
FEM analysis results. The force impulse needed in Eq. (22) is obtained by calcu-
lating the area beneath the curve presented in Fig. 11. Since the ellipsoid is hit
centrally, with the force vector being collinear with the Y Axis, the velocity of the
ellipsoid should have only Y component. Its value calculated analytically equals:
-0.0479 m/s. For the FEM analysis, the values of velocity at the point (0, 400, 250)
are exported. Y component of this velocity is shown in Fig. 14.
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Figure 11 Collision force used in the FEM simulation

Figure 12 Results of FEM transient analysis at t = 5 ms

Figure 13 Cross–section at t = 5 ms
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As the point is vibrating, its velocity is changing rapidly, but its average should
correspond to the overall velocity of the ellipsoid. The average calculated from the
values presented in Fig. 14 gives a value of: -0,472 m/s. The difference between
both values equals 1.38 %, thus confirming the correctness of the FEM analysis.

Additionally, in Fig. 15 the values of the von Mieses reduced stresses at point
(0, 400, 250) and at the point where force is applied (0, 500, 0) are presented for
reference

Figure 14 Y component of velocity at point (0, 400, 250)

Figure 15 Von Mieses reduced stresses at two points of ellipsoid: (0, 400, 250) and (0, 500, 0)

4. Discussion

1. A closer look at Fig. 4, where the maximal forces during collision at different
ellipsoid points are shown as circles with radius proportional to the maximal
force value, provides a notification, that the forces at points situated on the
ellipsoid principal axes of inertia do not have the same value of maximal
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collision force, which at first look goes against common sense, as in such
a configuration collision is central. In all these cases the reduced mass of
the ellipsoid and sphere is the same and the difference is caused by the way
in which the Hertz constant is calculated. (refer Eq. (1) and Eq. (??)).
The “pointed” ends of the ellipsoid have a smaller curvature radius, which
decreases the value of the calculated Hertz constant (kH), and therefore results
in lower value of the maximal collision force at these points. Thus, in the
simulation, not only taking into account the kinematic parameters of the
colliding bodies but also the geometric properties near to the collision point
are taken into consideration.

2. Two main factors influencing the maximal collision force at a particular point
in eccentric collision can be identified as: 1) the ratio of masses of colliding
bodies and 2) shape of the bodies. To generalize and explain both factors
in more detail two bodies, “Body 1” and “Body 2”, are considered. “Body
1” has values of principal moments of inertia different from each other (for
example an ellipsoid) and mass m1. “Body 2” has values of principal mo-
ments of inertia similar to each other (for example sphere, which have equal
principal moments of inertia) and mass m2. For particular values see Table
1. If mass m2 is much bigger than mass m1, the configuration of the bodies
during eccentric collision has a strong impact on the values of maximal col-
lision. In the opposite situation, when mass m2 is much smaller than mass
m1 the impact of the bodies configuration on maximal forces during collision
is limited. First, when one of the moments of inertia of “Body 1” is much
bigger than the others, the impact on the maximal collision force can be seen.
The impact of the shape of the colliding bodies on the collision force at a
particular point in an eccentric collision can be described by the ratio of the
biggest principal moment of inertia of “Body 1” to its remaining values. With
the growing value of this ratio, the impact of the configuration of the bodies
is growing. Additionally, the influence of the mass ratio is declining. At the
biggest ratio of principal moments of inertia, which is being investigated, the
mass ratio has no impact at all.

3. An analysis of the results of the FEM simulation, as presented in Figs. 12
and 13, shows general stress levels strongly below the elasticity level (stresses
observed are around 50 MPa compare with an elastic limit of 235 MPa) which
supports the statement, that in the presented case the ellipsoid withstands
the collision. There are stress picks observed at the initial stage of simulation,
which will cause plastic deformation in the vicinity of the collision point. Con-
tacts stresses reach high values, but proposed methodology is aimed to asses
body integrity in global sense, not analyze contact phenomenon. Force applied
in one point (node) and a stress averaged by an finite element much bigger
in size than contact area does not allow for any analysis of contact stresses.
At higher stress levels, a statement about structural integrity will require us-
ing nonlinear material behavior (material hardening curve) and eventually a
damage model, which should be a subject of further investigation. For brittle
materials, levels of maximal principal stresses can be used to assess material
integrity.
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4. An ellipsoid shape can be replaced by a technical object, for which FEM
collision analysis should be conducted. The geometry created in the CAD
system can be used to generate the required mesh. The CAD system can
also calculate the required moments of inertia, surface curvature at collision
point and vector normal to this surface at the collision point. Table 1 can
be used to asses if an approximation with the central collision is justified. If
not, an eccentric collision approach should be used to generate force during
the collision. The calculated force relation can then be directly applied in the
FEM analysis and results obtained similar to those presented in this article.

The following advantages of proposed hybrid approach deserve to be mentioned:
(I) It reduces time needed for mesh creation
(II) The FEM simulation gains direct physical justification (force function resulting
from a physical model)
(III) There is no need to model contact in the FEM analysis and the problems
related to it are eliminated
(IV) The calculation time is reduced as the problem has a lower number of finite
elements
Also, the following disadvantages can be observed:
(I) Additional time is required to obtain the collision force function
(II) An understanding of physical phenomenon is needed for proper application of
all approach steps
(III) Force applied to one point is an simplification
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