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This paper is concerned with analytical approximate solutions, to the generalized Duffing
oscillation. Modified Homotopy Perturbation Method (MHPM) and Energy Balance
Method (EBM) are applied to solve nonlinear equation and consequently the relationship
between the natural frequency and the initial amplitude is obtained in an analytical form.

The general solution can be used to yield the relationship between amplitude and
frequency in different strengths of nonlinearity. To verify the accuracy of the present
approach, illustrative examples are provided and compared with exact solutions. The
procedure yields rapid convergence with respect to the exact solution obtained by nu-
merical integration.
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1. Introduction

Duffing equation is a mathematical model for describing a classical oscillator driven
by a periodic force and it has been studied by many researchers because of its
widely applied background [1–4]. In an earlier paper, Pirbodaghi, et al. [5] used
Homotopy Analysis Method (HAM) and Homotopy Pade’ Technique to obtain an
accurate analytical solution for Duffing equations with cubic and quintic Nonlin-
earities. Beléndez, et al. [6] calculated analytical approximations to the periodic
solutions to the quintic Duffing oscillator. In another study [7] He’s Energy Bal-
ance Method (EBM) and Amplitude Frequency Formulation (AFF) was employed
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by Turgut Ozis and Ahmet Yildirim to construct the frequency–amplitude relation
for a Duffing–harmonic oscillator.

Most of the phenomena in engineering such as Duffing oscillators are essen-
tially nonlinear. Because of the difficulties of solving nonlinear equations, using
helpful and simple approaches are very important. In the past decades, Many
asymptotic techniques including the Energy Balance method (EBM) [8], Hamilto-
nian Approach (HA) [9], the Max–Min approach (MMA) [10], Parameter Expansion
Method (PEM) [11], Homotopy perturbation method (HPM) [12–14], Variational
iteration method (VIM) [15–17]and Differential transformation method (DTM) [18,
19] have been developed to construct many types of exact solutions of nonlinear
ordinary differential equation.

In this work, the following Duffing equation is considered:

ü+ u+ a3u
3 + a5u

5 + · · ·+ a2q−1u
2q−1

(1)

q = {k|k ≤ 2 k ∈ N}

With initial conditions: u (0) = A, u̇ (0) = 0.
The organization of this paper is as follows. The basic concepts of MHPM

and EBM are explained in section 2, Application of solution procedure illustrated
in both modified homotopy perturbation method and Energy balance method in
section 3. In Section 4, three special cases of the generalized Duffing oscillator are
considered and the analytic results obtained from the present study are compared
with those from the exact solution, followed by a conclusion in Section 5.

2. Basic concept

Basic ideas of modified homotopy perturbation method and Energy balance method
are considered and explained as follows:

2.1. Modified homotopy perturbation method

To describe the basic concept of this method, we consider the following nonlinear
differential equation:

A(u)− f(r) = 0 r ∈ Ω (2)

Subject to boundary condition:

B(u, δu/δn) = 0 r ∈ Γ (3)

where A,B, f (r) and Γ are a general differential operator, a boundary operator, a
known analytical function, and the boundary of domain Ω.

Generally speaking the operator Acan divided into a linear part L and a non-
linear partN (u). Equation (2) can so, be rewritten as:

L(u) +N(u)− f(r) (4)

We construct a homotopy of equation (2) ν (r, p) : Ω × [0, 1] → R which satisfied
Equation (5):

H(ν, p) = L(ν)− L(u0) + pL(u0) + p[N(ν)− f(r)] = 0 (5)
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where p is embedding parameter and u0 is an initial guess approximation of equation
(2) which satisfies the boundary condition.

According to Modified homotopy perturbation method, the solution is expanded
into series of p in the following form:

u =
n∑

i=1

piui (6)

Frequency is expanded in similar way:

1 = ω2 −
n∑

i=1

piαi (7)

Substituting equation (6) and equation (7) into equation (5) and equating the
terms with powers of p, we can obtain a series of linear equation.

The approximate for the solution and frequency are:

u = lim
p→1

n∑
i=1

ui (8)

ω2 = 1 + lim
p→1

n∑
i=1

αi (9)

where αi are arbitrary parameters that should be determined.

2.2. Energy balance method

In order to illustrating the basic concept of energy balance method, we consider
nonlinear equation as follows:

ü+ f(u(t)) = 0 (10)

Since u and t are generalized dimensionless displacement and time variables, re-
spectively.

Its variational principle can be obtained:

J(u) =

∫ t

0

(
− u̇2

2
+ F (u)

)
dt

(11)

J(u) =

∫
f(u)du

Using u (0) = A ,u̇ (0) = 0 as a boundary conditions, its Hamiltonian, therefore,
can be written in the form:

H =
u̇2

2
+ F (u) = F (A) (12)
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or:

R(t) =
u̇2

2
+ F (u)− F (A) = 0 (13)

Assume that its initial approximate guess can be expressed as:

u(t) = A cosωt (14)

Substituting Eq. (13) into u which term of (14) yields:

R(t) =
ω2A2 sinωt

2
+ F (A cosωt)− F (A) = 0 (15)

If, by chance, the exact solution had been chosen as the trial function, then it
would be possible to make R zero for all values of t by appropriate choice of ω.
Since Eq. (16) is only an approximation to the exact solution, R cannot be made
zero everywhere. Collocation at ωt = π/4 gives:

ω =

√
2(F (A)− F (A cosωt))

A2 sin2 ωt
=

√
4(F (A)− F (

√
2A/2))

A2
(16)

3. Application

3.1. Modified homotopy perturbation method:

We can rewrite equation (1) as following form:

ü+ 1u− p
[
a3u

3 + a5u
5 + · · ·+ a2q−1u

2q−1
]

p ∈ [0, 1] (17)

where p is embedding parameter, which is also used to expand u:

u =

n∑
i=1

piui (18)

By expanding 1 as a coefficient of u, we can obtain:

ω2 = 1 +
n∑

i=1

piαi (19)

Substitution equation (17) and equation (18) into equation (1) yields:

p0 : ü0 + ω2u0 = 0 (20)

p1 : ü1 + ω2u1 = (α1)u0 − a3u
3 − a5u

5 − · · · − a2q−1u
2q−1 (21)

By solving equation (19), we can obtain:

u0(t) = A cosωt (22)
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Substitution of equation (21) into the right side of equation (20) gives
ü1 + ω2u1 = ρ (ωt), in which:

ρ (ωt) = −α1A cos (ωt) + a3A
3 cos (ωt)

3
+ a5A

5 cos (ωt)
5

(23)

+ · · ·+a2q−1A
2q−1 cos (ωt)

2q−1

By using Fourier series, we can achieve secular term:

ρ(ωt) =
∞∑

n=0

δ2n+1 cos[(2n+ 1)ω] ≈ δ1 cos(ωt) (24)

δ1 =
4

π

∫ π
2

0

ρ(φ) cos(φ)dφ =
4

π

∫ π
2

0

(
−α1A cos2(φ) + a3A

3 cos4(φ) + · · ·

(25)

+a2q−1A
2q−1 cos2q(φ)

)
dφ

We know: ∫ π
2

0

cos2q(t) =
π

2

q∏
j=1

(
2j − 1

2j

)
(26)

Using equation (23) yields:

δ1 = 2


2q−1∑
i=2

a2i−1A
2i−1

q∏
j=1

(
2j − 1

2j

)− α1A (27)

Avoiding secular term requires δ1 = 0, so:

α1 = 2


2q−1∑
i=2

a2i−1A
2i−1

q∏
j=1

(
2j − 1

2j

) (28)

From equation (7) and by setting p = 1:

ω2 = 1 + α1 (29)

Therefore we can obtain angular frequency:

ωMHPM =

√√√√√2


2q−1∑
i=2

a2i−1A2i−1

i∏
j=1

(
2j − 1

2j

)+ 1 (30)

3.2. Energy balance method

We can rewrite equation (1) as following form:

ü+ f(u)u = 0 (31)

where f (u) is:
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f(u) = 1 + a3u
2 + a3u

4 + · · ·+ a2q−1u
2q−2 (32)

Its variational principle can be easily obtained as:

J(x) =

∫ t

0

(
−1

2
u̇2 +

u2

2
+

a3u
4

4
+

a5u
6

6
+ · · ·+ a2q−1u

2q−2

2q

)
(33)

The Hamiltonian of Eq. 33, can be yield in the form:

H =
u̇

2
+

u2

2
+

a3u
4

4
+

a5u
6

6
+ · · ·+ a2q−1u

2q

2q

(34)

=
A2

2
+

a3A
4

4
+

a5A
6

6
+ · · ·+ a2q−1A

2q

2q

or:

R (t) =
u̇

2
+

u2

2
+

a3u
4

4
+

a5u
6

6
+ · · ·+ a2q−1u

2q

2q

(35)

−A2

2
− a3A

4

4
− a5A

6

6
− · · · − a2q−1A

2q

2q
= 0

Oscillation systems contain two important physical parameters, i.e. the fre-
quency ω and the amplitude of oscillation, A. Substituting u (t) = A cos (ωt) as a
trial function into (35) the following residual can be obtained:

R (t) =
1

2
A2ω2 sin2 ωt+

1

2
A2 cos2 ωt+

1

4
a3A

4 cos4 ωt+
1

6
a5A

6 cos6 ωt+ · · ·

(36)

+
1

2q
a2q−1A

2q cos2q ωt−
(
A2

2
+

a3A
4

4
+

a5A
6

6
+ · · ·+ a2q−1A

2q

2q

)
= 0

If we collocate ωt = π/4, we obtain:

ωEBM =

√√√√√4

2q−1∑
i=2

a2i−1A2i−1

2i

[
1−

(√
2

2

)]2i+ 1 (37)

4. Numerical Cases

In this study, the objective is applying MHPM and EBM to obtain an explicit
analytic solution of the generalized Duffing oscillation problem. In Table.1 the
comparison between the period obtained from analytical approximate and exact
solution [4] for a range of oscillation amplitudes have been presented and also the
error analysis have been calculated.

According to error analysis in Tab. 1, the results which obtained from EBM have
more accuracy with exact result in comparison with MHPM. Another consequence
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is achieved from these figures, is good adjustment between the exact solution and
approximate results. High accuracy and validity (Figs. 1) reveals that both methods
are powerful and effective to use Solution gives us possibility to obtain frequency in
different cases with different values of power, so many of prior researches in Duffing
nonlinear equations are special cases of this general solution.

Table 1 Comparison of the approximate periods with the exact period when A= 0.1, 1, 10

A a3 a5 a7 Type of Equation TEXACT TMHPM

Er(%)
TEBM

Er(%)

0.1 1 0 0
q = 2
ü+ u+ a3u

3 = 0
6.2598 6.2596

0.002%
6.2596
0.002%

1 1 0
q = 3
ü+ u+ a3u

3 + a5u
5 = 0

6.2564 6.2562
0.001%

6.2563
0.001%

1 1 1
q = 4
ü+ u+ a3u

3 + a5u
5 + a7u

7 = 0
6.2596 6.2596

0.000%
6.2596
0.000%

1 1 0 0
q = 2
ü+ u+ a3u

3 = 0
4.7682 4.7497

0.314%
4.7497
0.314%

1 1 0
q = 3
ü+ u+ a3u

3 + a5u
5 = 0

4.1218 4.0771
1.082%

4.1106
0.271%

1 1 1
q = 4
ü+ u+ a3u

3 + a5u
5 + a7u

7 = 0
3.7504 3.6758

1.982%
3.7535
0.082%

10 1 0 0
q = 2
ü+ u+ a3u

3 = 0
0.7363 0.7207

2.116%
0.7207
2.116%

1 1 0
q = 3
ü+ u+ a3u

3 + a5u
5 = 0

0.0835 0.0789
5.501%

0.0816
2.277%

1 1 1
q = 4
ü+ u+ a3u

3 + a5u
5 + a7u

7 = 0
0.0092 0.0084

8.696%
0.0091
1.081%

5. Conclusions

In this paper, the generalized Duffing equation is investigated with application of
Modified homotopy perturbation method (MHPM) and Energy Balance Method
(EBM) which are two powerful and efficient methods. At first the basic concepts
of these methods are explained, application of solution procedure illustrated in
both MHPM and EBM and finally the obtained results are compared with exact
integration solution. The advantages of using these methods are high accuracy and
simple procedure in comparison to exact solution. Comparison this general solution
to exact integration results shows the high accuracy and validity of these methods
even in high strength type of nonlinearity.
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(i) for 1.0=A , 2=q (ii) for 10=A , 2=q

(iii) for 1.0=A , 3=q (iv) for 10=A , 3=q

(v) for 1.0=A , 4=q (vi) for 10=A , 4=q

Figure 1 Comparison between EBM (Dash Line) with numerical ones (Dot) with different A
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