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The present investigation is concerned with one dimensional problem in a homogeneous,
isotropic thermoelastic medium with double porosity in the presence of Hall current
subjected to thermomechanical sources. Thermoelastic theory with one relaxation time
developed by Lord-Shulman [2] has been used to solve the problem. A state space ap-
proach has been applied to investigate the problem. As an application of the approach,
normal force and thermal source have been taken to illustrate the utility of the ap-
proach. The expressions for the components of normal stress, equilibrated stress and the
temperature change are obtained in the frequency domain and computed numerically.
Numerical simulation is prepared for these quantities. The effect of Hall current and
thermal relaxation time are depicted graphically on the resulting quantities for a specific
model. Some particular cases of interest are also deduced from the present investigation.
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momechanical sources.

1. Introduction

The constitutive equations for thermoelastic material, which express the relations
between the stress, the strain and the temperature change, were first introduced by
Biot [1]. With Biot’s theory, many solutions for thermal response caused by the
change of temperature have been developed by numerous investigators. However,
it involves a paradox that the thermal disturbances propagate at infinite speeds.
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In recent years increasing attention has been made to remove this paradox and to
develop the generalized theory of thermoelasticity, which was found to give more re-
alistic results than the coupled or uncoupled theories of thermoelasticity, especially
when short time effects or step temperature gradients are considered. The theory of
generalized thermoelasticity with one relaxation time was first introduced by Lord
and Shulman [2], who obtained a wave-type heat equation by postulating a new law
of heat conduction instead of the classical Fourier’s law. Hetnarski and Ignaczak
[3] has presented a review on the generalized theories of thermoelasticity. A com-
prehensive work has been done in the generalized theories of thermoelasticity with
one relaxation time by different investigators by considering different problems.

Porous media theories play an important role in many branches of engineering
including material science, the petroleum industry, chemical engineering, biome-
chanics and other such fields of engineering. Representation of a fluid saturated
porous medium as a single phase material has been virtually discarded. The mate-
rial with the pore spaces such as concrete can be treated easily because all concrete
ingredients have the same motion if the concrete body is deformed. However the
situation is more complicated if the pores are filled with liquid and in that case
the solid and liquid phases have different motions. Due to these different motions,
the different material properties and the complicated geometry of pore structures,
the mechanical behavior of a fluid saturated porous thermoelastic medium becomes
very difficult. So researchers from time to time, have tried to overcome this diffi-
culty and we see many porous media in the literature. A brief historical background
of these theories is given by de Boer [4, 5].

As far as modern era is concerned Biot [6] proposed a general theory of three-
dimensional deformation of fluid saturated porous salts. Biot theory is based on the
assumption of compressible constituents and till recently, some of his results have
been taken as standard references and basis for subsequent analysis in acoustic,
geophysics and other such fields. Another interesting theory is given by Bowen
[7], de Boer and Ehlers [8] in which all the constituents of a porous medium are
assumed to be incompressible. The fluid saturated porous material is modeled as
a two phase system composed of an incompressible solid phase and incompressible
fluid phase, thus meeting the many problems in engineering practice, e.g. in soil
mechanics.One important generalization of Biot’s theory of poroelasticity that has
been studied extensively started with the works by Barenblatt et al. [9], where the
double porosity model was first proposed to express the fluid flow in hydrocarbon
reservoirs and aquifers.

The double porosity model represents a new possibility for the study of impor-
tant problems concerning the civil engineering. It is well–known that, under super-
saturation conditions due to water of other fluid effects, the so called neutral pres-
sures generate unbearable stress states on the solid matrix and on the fracture faces,
with severe (sometimes disastrous) instability effects like landslides, rock fall or soil
fluidization (typical phenomenon connected with propagation of seismic waves). In
such a context it seems possible, acting suitably on the boundary pressure state, to
regulate the internal pressures in order to deactivate the noxious effects related to
neutral pressures; finally, a further but connected positive effect could be lightening
of the solid matrix/fluid system.
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Wilson and Aifanits [10] presented the theory of consolidation with the double
porosity. Khaled, Beskos and Aifantis [11] employed a finite element method to
consider the numerical solutions of the differential equation of the theory of con-
solidation with double porosity developed by Aifantis[10]. Wilson and Aifantis [12]
discussed the propagation of acoustics waves in a fluid saturated porous medium.
The propagation of acoustic waves in a fluid–saturated porous medium containing
a continuously distributed system of fractures is discussed. The porous medium is
assumed to consist of two degrees of porosity and the resulting model thus yields
three types of longitudinal waves, one associated with the elastic properties of the
matrix material and one each for the fluids in the pore space and the fracture space.

Beskos and Aifantis [13] presented the theory of consolidation with double
porosity–II and obtained the analytical solutions to two boundary value problems.
Khalili and Valliappan [14] studied the unified theory of flow and deformation in
double porous media. Aifantis [15–19] introduced a multi–porous system and stud-
ied the mechanics of diffusion in solids. Moutsopoulos et al. [20] obtained the nu-
merical simulation of transport phenomena by using the double porosity/ diffusivity
continuum model. Khalili and Selvadurai [21] presented a fully coupled constitutive
model for thermo–hydro–mechanical analysis in elastic media with double porosity
structure. Pride and Berryman [22] studied the linear dynamics of double–porosity
dual–permeability materials. Straughan [23] studied the stability and uniqueness
in double porous elastic media.

Svanadze [24–28] investigated some problems on elastic solids, viscoelastic solids
and thermoelastic solids with double porosity. Scarpetta et al. [29, 30] proved the
uniqueness theorems in the theory of thermoelasticity for solids with double porosity
and also obtained the fundamental solutions in the theory of thermoelasticity for
solids with double porosity.

In recent years the state space description of linear systems has been used ex-
tensively in various areas of engineering, such as the analysis of control systems.
The state space approach offers an attractive way to avoid the difficulties of the tra-
ditional linear model approach. The state–space representation is a mathematical
model of a physical system as a set of input, output and state variables related by
first-order differential equations. To abstract from the number of inputs, outputs
and states, the variables are expressed as vectors. If the dynamical system is linear
and time invariant, the differential and algebraic equations may be written in ma-
trix form. The state-space representation provides a convenient and compact way
to model and analyze systems with multiple inputs and outputs.

Bahar and Hetnarski investigated good number of problems in thermoelasticity
by using state space approach [31–36]. Also Ezzat et.al. [37], Maghraby et al. [38],
Youssef and Al–Lehaibi [39], Othman [40], Elisbai and Youseff [41] and Sherief and
El–sayed [42] investigated different types of problems in different media by using
state space approach

The foundations of magnetoelasticity were presented by Knopoff [43] and Chad-
wick[44] and developed by Kaliski and Petykiewicz[45]. An interesting attention
is being devoted to the interaction between magnetic field and strain field in a
thermoelastic solid due to its many applications in the fields of geophysics, plasma
physics and related topics. In all papers quoted it was assumed that the interaction
s between the two fields take place by means of the Lorentz forces appearing in the
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equations of motion and by means of a term entering Ohm’s law and describing the
electric field produced by the velocity of a material particle, moving in a magnetic
field.

When the magnetic field is very strong, the conductivity will be a tensor and the
effect of Hall current cannot be neglected. The conductivity normal to the magnetic
field is reduced due to the free spiraling of electrons and ions about the magnetic
lines of force before suffering collisions and a current is induced in a direction normal
to both the electric and magnetic fields. This phenomenon is called the Hall effect.
Authors like Sarkar and Lahiri [46], Salem [47], Zakaria [48–50], Attia [51] have
considered the effect of Hall currents for two dimensional problems in micropolar
thermoelasticity.

In the present paper, we formulate the state space approach to boundary value
problem for thermoelastic material with double porosity structure in the presence
of of Hall current with one relaxation time subjected to thermomechanical sources.
The expressions for normal stress, equilibrated stresses and temperature distribution
are obtained in closed form, computed numerically and represented graphically for
normal force and thermal source. The effect of Hall currents and thermal relaxation
time are shown graphically for the resulting quantities.

2. Basic equations

Following Iesan and Quintanilla [52], Lord and Shulman [2], the field equations
and the constitutive relations for homogeneous thermoelastic material with double
porosity structure, when the Hall current is taken into account, can be written as:

2.1. Equation of motion

µ∆ui + (λ+ µ)uj,ji + bφ,i + dψ,i − βT,i + Fi = ρüi (1)

2.2. Equilibrated stress equations of motion

α∆φ+ b1∆ψ − bur,r − α1φ− α3ψ + γ1T = κ1φ̈ (2)

b1∆φ+ γ∆ψ − dur,r − α3φ− α2ψ + γ2T = κ2ψ̈ (3)

2.3. Equation of heat conduction

(1 + τ0
∂

∂t
)[ρC∗Ṫ + βT0ėii + γ1T0ϕ̇+ γ2T0ψ̇] = K∗∆T (4)

2.4. Constitutive relations

tij = λerrδij + 2µeij + bδijφ+ dδijψ − βδijT (5)

σi = αφ,i + b1ψ,i (6)

ζi = b1φ,i + γψ,i (7)
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The generalized Ohm’s law including Hall current:

Ji = σ0

(
Ei + µ0εijruj,tHr −

µ0

ene
εijrJjHr

)
(8)

where Fi = µ0εijrJjHr is the Lorentz force; σ0(= nee
2te/me) is the electrical

conductivity; µ0 is the magnetic permeability; e is the charge of an electron; ne is
the number density of electrons; te is the electron collision time; me is the electron
mass; Ei is the intensity tensor of the electric field; λ and µ are Lame’s constants; ρ is
the mass density; β = (3λ+ 2µ)αt; αt is the coefficient of linear thermal expansion;
C∗ is the specific heat at constant strain; ui are the displacement components; tij is
the stress tensor; εijr is the permutation symbol; µ0 is the magnetic permeability; Jr
is the conduction current density ; κ1 and κ2 are coefficients of equilibrated inertia;
ν1 is the volume fraction field corresponding to pores and ν2 is the volume fraction
field corresponding to fissures ; φ and ψ are the volume fraction fields corresponding
to ν1 and ν2 respectively; σ1 is the equilibrated stress corresponding to ν1; ζ1 is the
equilibrated stress corresponding to ν2, K

∗ is the coefficient of thermal conductivity;
τ0 is the relaxation time and b, d, b1, γ, γ1, γ2 are constitutive coefficients; δij is
the Kronecker’s delta; T is the temperature change measured form the absolute
temperature T0 (T0 ̸= 0), a superposed dot represents differentiation with respect
to time variable t.

∇ = î
∂

∂x1
+ ĵ

∂

∂x2
+ k̂

∂

∂x3
∆ =

∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

are the gradient and Laplacian operators, respectively.

3. Formulation and solution of the problem

We consider a homogeneous, isotropic, perfectly conducting thermoelastic solid with
double porosity occupying the region 0 ≤ x < ∞. For one dimensional problem,
we take u(x1, t), φ(x1, t), ψ(x1, t), T (x1, t). A uniform very strong magnetic field
of strength H0 is assumed to be applied in the positive y - direction and we also
assume that E = 0. Under these assumptions, the generalized Ohm’s law gives
J1 = J2 = 0 everywhere in the medium.
The current density components J3 is given by:

J3 =
σ0µ0H0

1 +m2

(
∂u

∂t

)
(9)

wherem = ωete is the Hall parameter and ωe = eµ0H0/me is the electron frequency.
Let us introduce the following non–dimensional variables:

x′1 =
ω1

c1
x1 u′ =

ω1

c1
u t′ij =

tij
βt0

M =
σ0µ

2
0H

2
0

ρω1

τ ′0 = ω1τ0 φ′ =
k1ω

2
1

α1
φ ψ′ =

k1ω
2
1

α1
T ′ =

T

T0
(10)

t′ = ω1t σ′
i =

(
c1
αω1

)
σi ζ ′i =

(
c1
αω1

)
ζi
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where c21 = λ+2µ
ρ , ω1 =

ρC∗c21
K∗ and M is the Hartmann number or magnetic param-

eter.
Making use of dimensionless quantities given in (10) in equations (1)–(4) (dropping
primes for convenience), we get:

∂2u

∂x12
+ δ1

∂φ

∂x1
+ δ2

∂ψ

∂x1
− δ3

∂T

∂x1
−
(

M

1 +m2

)
∂u

∂t
=
∂2u

∂t2
(11)

δ4
∂2φ

∂x12
+ δ5

∂2ψ

∂x12
− δ6

∂u1
∂x1

− δ7φ− δ8ψ + δ9T =
∂2φ

∂t2
(12)

δ10
∂2φ

∂x12
+ δ11

∂2ψ

∂x12
− δ12

∂u

∂x1
− δ13φ− δ14ψ + δ15T =

∂2ψ

∂t2
(13)

τ11

[
δ16

∂

∂t

(
∂u

∂x1

)
+ δ17

∂φ

∂t
+ δ18

∂ψ

∂t
+
∂T

∂t

]
=

∂2T

∂x12
(14)

where

δ1 =
bα1

ρ21k1ω
2
1

δ2 =
dα1

ρC2
1k1ω1

2
δ3 =

βT0
ρC2

1

δ4 =
α

C2
1k1

δ5 =
b1

C2
1k1

δ6 =
b

α1
δ7 =

α1

k1ω1
2

δ8 =
α3

k1ω1
2

δ9 =
γ1T0
α1

δ10 =
b1

C2
1k2

δ11 =
γ

C2
1k2

δ12 =
dk1
α1k2

(15)

δ13 =
α3

k2ω1
2

δ14 =
α2

k2ω1
2

δ15 =
γ2T0k1
α1k2

δ16 =
βC2

1

K∗ω1

δ17 =
γ1α1C

2
1

K∗k1ω1
3

δ18 =
γ2α1C

2
1

K∗k1ω1
3

τ11 = (1 + τ0
∂

∂t
)

Assuming the time harmonic solution of the equations (11)–(14) as,

(u (x, t) , φ (x, t) , ψ (x, t) , T (x, t)) = (u, φ, ψ, T )e−iωt (16)

where ω is the frequency.
Equations (11)–(14) with the aid of equation (16) yield,

u,11 = N1u+N2ϕ,1 +N3ψ,1 +N4T ,1 (17)

ϕ,11 = N5u,1 +N6ϕ+N7ψ +N8T (18)

ψ,11 = N9u,1 +N10ϕ+N11ψ +N12T (19)

T ,11 = N13u,1 +N14ϕ+N15ψ +N16T (20)

where

N1 = −iω
(

M

1 +m2

)
− ω2 N2 = −δ1 N3 = −δ2 N4 = δ3,M1 =

−δ5
δ4

M2 =
δ6
δ4

M3 =
δ7 − ω2

δ4
M4 =

δ8
δ4

M5 =
−δ9
δ4
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M6 =
−δ10
δ11

M7 =
δ12
δ11

M8 =
δ13
δ11

M9 =
δ14 − ω2

δ11

M10 =
−δ15
δ11

M11 =
δ17
δ20

M12 =
δ18
δ20

M13 =
δ19
δ20

M14 =
1

δ20

δ20 =
δ16
−iω

N13 = τ11δ16 N14 = τ11δ17 N15 = τ11δ18 N16 = τ11

M15 = 1−M1M6, N5 =
M1M7 +M2

M15
N6 =

M1M8 +M3

M15

N7 =
M1M9 +M4

M15
N8 =

M1M10 +M5

M15
N9 =M6N5 +M7

N10 =M6N6 +M8 N11 =M6N7 +M9 N12 =M6N8 +M10

4. State–space formulation

Choosing as a state variable displacement u, volume fraction φ and ψ, temperature
change T in the x – direction, then the equations can be written in the matrix form
as:

dV (x, ω)

dx
= A (ω)V (x, ω) (21)

and the values of A(ω), V (x, ω) are given in the appendix I.
The formal solution of system (21) can be written in the form

V (x, ω) = exp [A (ω)x]V (0, ω) (22)

Value of V (0, ω) is given in the appendix I.
We shall use the well-known Cayley-Hamilton theorem to find the form of the matrix
exp[A(ω)x]. The characteristics equation of the matrix A(ω) can be written as

λ8 +D1λ
6 +D2λ

4 +D3λ
2 +D4 = 0 (23)

where

D1 = −N1−N6−N11−N16 −N2N5−N3N9−N4N13

D2 = N1N6 +N1N11 +N1N16 +N6N11 +N6N16 −N7N10−N8N14

+N11N16 −N12N15 −N2N7N9 +N3N6N9 +N2N5N11 +N2N5N16

−N3N5N10 +N3N9N16 −N2N8N13 −N4N5N14 +N4N6N13

−N4N9N15 −N3N12N13 +N4N11N13

D3 = −N6N11N16 +N7N10N16 −N1N6N11 +N1N7N10−N1N6N16

+N1N8N14 −N1N11N16 +N1N12N15 +N6N12N15 −N7N12N14

−N8N10N15 +N8N11N14 +N2N7N9N16 −N3N6N9N16 −N2N8N9N15

+N3N8N9N14 +N4N6N9N15 −N4N7N9N14 −N2N5N11N16

+N3N5N10N16 +N2N5N12N15 −N2N7N12N13 +N2N8N11N13

−N3N5N12N14 +N3N6N12N13 −N3N8N10N13 −N4N5N10N15

+N4N5N11N14 −N4N6N11N13 +N4N7N10N13

D4 = N1N6(N11N16 −N12N15) +N1N7(N12N14 −N10N16)

+N1N8(N10N15 −N11N14) (24)
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Equation (23) is biquadrate in λ2, yield four roots says λ1, λ2, λ3, λ4.

Now the Taylor series expansion for matrix exponential in equation (23) is given
by:

exp [A (ω)x] =

∫ ∞

n=0

[A (ω)x]
n

n!
(25)

Using Cayley–Hamilton theorem, this infinite series can be truncated as

exp [A (ω)x] = a0I + a1A+ a2A
2 + a3A

3 (26)

where a0, a1, a2, a3 are parameters depending on x and ω.

According to Cayley–Hamilton theorem the characteristic roots

−λ1,−λ2,−λ3,−λ4 of the matrix A must satisfy equation (26). Therefore, we get:

exp [−λ1x] = a0I − a1λ1 + a2λ1
2 − a3λ1

3

exp [−λ2x] = a0I − a1λ2 + a2λ2
2 − a3λ2

3

exp [−λ3x] = a0I − a1λ3 + a2λ3
2 − a3λ3

3

exp [−λ4x] = a0I − a1λ4 + a2λ4
2 − a3λ4

3 (27)

Solving the above system of equations, we obtain the value of parameters a0, a1, a2, a3
and these values are given in appendix.

Therefore, we have

exp [A (ω)x] = L(x, ω) (28)

where L(x,w) is a 8× 8 matrix with the components:

l11 = a0 + a2N1 l12 = a3R1 l13 = a3R2 l14 = a3R3

l21 = a3R5 l22 = a0 + a2N6 l23 = a2N7 l24 = a2N8

l31 = a3R9 l32 = a2N10 l33 = a0 + a2N11 l34 = a2N12

l41 = a3R13 l42 = a2N14 l43 = a2N15 l44 = a0 + a2N16

R1 = N2N6 +N3N10 +N4N14 R2 = N2N7 +N3N11 +N4N15

R3 = N2N8 +N3N12 +N4N16

R5 = N1N5 R9 = N1N9 R13 = N1N13

Rewriting the equation (22) with the aid of equation (28) yield,

V (x, ω) = L(x, ω)V (0, ω) (29)

Therefore, we obtain
u
φ

ψ
T

 =


l11 l12 l13 l14
l21 l22 l23 l24
l31 l32 l33 l34
l41 l42 l43 l44



A1

A2

A3

A4

 (30)
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5. Boundary conditions

A homogeneous isotropic thermoelastic solid with double porosity structure occu-
pying the region 0 ≤ x <∞ is considered. The bounding plane x = 0 subjected to
normal force and thermal source. Mathematically these can be written as:

1. t11 = −F1 exp[−iωt] (31)

2. σ1 = −F1 exp[−iωt] (32)

3. ζ1 = −F1 exp[−iωt] (33)

4. T = F2 exp[−iωt] (34)

where F1and F2 are the magnitude of the force and constant temperature applied
on the boundary.

Substituting the values of u, φ, ψ, T, t11, σ1 and ζ1 from the equations (5), (6), (7),
(30) in the equations (31)–(34) and with the aid of equations (10) and (16), we
obtain: 

Q1 Q2 Q3 Q4

Q5 Q6 Q7 Q8

Q9 Q10 Q11 Q12

Q13 Q14 Q15 Q16



A1

A2

A3

A4

 =


−F1

−F1

−F1

F 2

 (35)

The values of Q1, Q2, . . . , Q16 are given in the appendix II.

Solving (35) for A1, A2, A3, A4 and substituting the resulting values in equation (30)
yield the value of normal stress, equilibrated stresses and temperature distribution
as,

t11 = (S1
Γ1

Γ
+ S2

Γ2

Γ
+ S3

Γ3

Γ
+ S4

Γ4

Γ
)e−iωt (36)

σ1 = (S5
Γ1

Γ
+ S6

Γ2

Γ
+ S7

Γ3

Γ
+ S8

Γ4

Γ
)e−iωt (37)

ζ1 = (S9
Γ1

Γ
+ S10

Γ2

Γ
+ S11

Γ3

Γ
+ S12

Γ4

Γ
)e−iωt (38)

T = (l41
Γ1

Γ
+ l42

Γ2

Γ
+ l43

Γ3

Γ
+ l44

Γ4

Γ
)e−iωt (39)

6. Particular cases

6.1. If F2 = 0 in equation (36)–(39), we obtain the corresponding expressions for
normal force.

6.2. If F1 = 0 in equation (36)–(39), yields the corresponding expressions for
thermal source.

6.3. If m = 0 in equation (36)–(39), we obtain the corresponding expressions
without the effect of Hall currents.
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7. Numerical results and discussion

The material chosen for the purpose of numerical computation is copper, whose
physical data is given by Sherief and Saleh [53] as:

λ = 7.76 × 1010Nm−2 c∗ = 3.831×103m
2
s−2K−1 µ = 3.86 × 1010Nm−2

k = 3.86× 103Ns−1K−1 ω1= 1×1011s−1 T0 = 0.293 × 103K
αt = 1.78× 10−5K−1 t = 0.1s, ρ = 8.954× 103Kgm−3

Following Khalili [54], the double porous parameters are taken as:
α2 = 2.4× 1010Nm−2 α3 = 2.5× 1010Nm−2 γ = 1.1× 10−5N
α = 1.3×10−5Nγ1 = 0.16×105Nm−2 b1 = 0.12×10−5N d = 0.1×1010Nm−2

γ2 = 0.219× 105Nm−2 k1 = 0.1456× 10−12Nm−2s2 b = 0.9× 1010Nm−2

α1 = 2.3× 1010 Nm−2 k2 = 0.1546× 10−12Nm−2s2

Following Zakaria [49], the electric constants are taken as:
σ0 = 9.36× 105 Col2/Cl.cm.s H0 = 108Col/cm.s

The software MATLAB has been used to determine the values of normal stress,
equilibrated stresses and temperature distribution. The variation of these values
with respect to distance x have been shown in Figs. 1–8 and Figs. 9–16 for normal
force and thermal source respectively. Figs. 1–4, Figs. 9–12 and Figs. 5–8, Figs.
13–16 depicts the behavior of variation of normal stress, equilibrated stresses and
temperature distribution with Hall parameter (m) and relaxation time (τ0) with
respect to distance x respectively. In Figs. 1–4 and Figs. 9–12, the solid lines
corresponds to thermoelastic material with double porous structure without the
effect of Hall currents(TWOH) and small dashes line corresponds to thermoelastic
material with double porous structure with Hall current effect (TWH) whereas in
Figs. 5–8 and Figs. 13–16, solid line corresponds to the value when relaxation time
τ0 = 0.02 and small dashes line corresponds to τ0 = 0.03.

7.1. Normal force

Fig. 1 shows the variation of normal stress t11 w.r.t distance x. The behavior of
variation is oscillatory in nature for both TWOH and TWH. It is noticed that the
magnitude values are smaller in case of TWH in comparison with TWOH.
Figs. 2 and 3 depict the variations of equilibrated stresses σ1 and ζ1 w.r.t. distance x
respectively. The behavior is similar for both TWOH and TWH with the difference
in magnitude value. The magnitude values of equilibrated stresses are more in case
of TWH as compared to TWOH.
Fig. 4 represents the variation of temperature distribution T w.r.t distance x. It
is evident that as away from the source, for TWOH, the magnitude values of T
decreases whereas reverse behaviour is noticed for TDWH.
Fig. 5 shows the variation of normal stress t11 w.r.t. distance x. The behavior of
variation is oscillatory in nature for both the values of relaxation time. It is noticed
that the magnitude values increase with increase in the value of relaxation time.
Fig. 6 and 7 depict the variation of equilibrated stresses σ1 and ζ1 w.r.t. distance
x respectively. The behavior is similar for both the cases with the difference in
magnitude value. It is found that the magnitude values increase with increase in
the value of relaxation times.
Fig. 8 illustrates the variation of temperature distribution T w.r.t. distance x. For
τ0 = 0.02 the magnitude value of T decreases for 0 ≤ x < 2.6 and again increases
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as moving away from the source wheras for τ0 = 0.03, as moving away from the
source, the magnitude value decreases. To depict the comparison, the values of T
for τ0 = 0.02 have been magnified by multiplying 10.
To its original values.

7.2. Thermal source

Fig. 9 shows the variation of normal stress t11 w.r.t. distance x. The behavior of
variation is oscillatory in nature for both TWOH and TWH. Also the magnitude
value is smaller in case of TWOH in comparison to TWH near the application of
the source while the reverse pattern is observed away from the source.
Fig. 10 and 11 depict the variation of equilibrated stresses σ1 and ζ1 w.r.t. distance
x respectively. The variation is of oscillatory nature for both the cases while the
magnitude value shows opposite behavior for all values of x.
Fig. 12 represents the variation of temperature distribution T w.r.t. distance x.
For TWOH, the magnitude value of T increases as moving away from the source
while a reverse behavior is noticed in case of TWH.
Fig. 13 shows the variation of normal stress t11 w.r.t. distance x. The variation is
of oscillatory nature for both the values of relaxation time. The magnitude values
also increases with increase in the time of relaxation.
Fig. 14 and 15 depict the variation of equilibrated stresses σ1 and ζ1 w.r.t. distance
x respectively. The behavior is similar for both the cases with the difference in
magnitude value. It is found that the magnitude values increases with increase in
the value of relaxation time.
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Figure 2 Variation of equilibrated stress σ1 with distance x (Normal force; Effect of Hall current)
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current)

0 1 2 3 4 5 6 7 8

Distance (x)

0

1

2

3

4

5

6

7

N
o

rm
a

l
s
tr

e
s

s
(

t 1
1

)

t
0

= 0.02

t
0

= 0.03

Figure 5 Variation of normal stress t11 with distance x (Normal force; Effect of relaxation time)



438 Kumar, R. and Vohra, R.

0 1 2 3 4 5 6 7 8

D istan ce (x)

0

1

2

3

4

5

6

7

E
q

u
ili

b
ra

te
d

s
tr

e
s
s

(
s

1
)

t
0

= 0.02

t
0

= 0.03

Figure 6 Variation of equilibrated stress σ1 with distance x (Normal force; Effect of relaxation
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Figure 8 Variation of temperature distribution T with distance x (Normal force; Effect of relax-
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Figure 10 Variation of equilibrated stress σ1 with distance x (Thermal source; Effect of Hall
current)
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Figure 12 Variation of temperature distribution T with distance x (Thermal source; Effect of
Hall current)
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Figure 16 Variation of temperature distribution T with distance x (Thermal source; Effect of
relaxation time)

Fig. 16 illustrates the variation of temperature distribution T w.r.t. distance x. For
τ0 = 0.02 , the magnitude value of T is smaller in comparison to the values when
τ0 = 0.03 near the application of the source while the reverse pattern is noticed
away from the source.

8. Conclusions

The behaviour of normal stress, equilibrated stresses and temperature distribution
in an isotropic homogeneous thermoelastic material with double porosity structure
for L-S theory under the effect of Hall currents has been investigated due to normal
force and thermal source by using state space approach. It is observed that

1. For normal force, the behavior of normal stress is similar with and without
the effect of Hall current for all values of x but the magnitude value is larger
in case where Hall current is not taken into consideration i.e. m = 0 while for
thermal source, the variation is similar for both the cases near the application
of the source but an opposite pattern is observed as moving away from the
source.

2. In case of normal force, the variation of equilibrated stresses is identical with
and without the effect of Hall current for all values of x. It is observed that
the magnitude value of the equilibrated stresses increases due to effect of Hall
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current. For thermal source, the behavior of variation is oscillatory in nature
with and without the Hall current effect but the magnitude values shows an
opposite pattern.

3. The magnitude values of temperature distribution is larger under the effect
of Hall currents in case of normal force wheras a reverse trend is observed for
thermal source.

4. The magnitude values of normal stress and equilibrated stresses increases with
the increase in relaxation time for both normal force and thermal source while
the pattern of variation remains same.

5. The magnitude values of temperature distribution is large for greater value
of relaxation time near the application of the source while reverse behavior is
observed as moving away from the source.
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Appendix I

A(x,w) =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
N1 0 0 0 0 N2 N3 N4

0 N6 N7 N8 N5 0 0 0
0 N10 N11 N12 N9 0 0 0
0 N14 N15 N16 N13 0 0 0



V (x,w) =



u(x,w)
φ(x,w)

ψ(x,w)
T (x,w)

(u(x,w)),1
(φ(x,w)),1
(ψ(x,w)),1
(T (x,w)),1


V (0, w) =



u(0w)
φ(0, w)

ψ(0, w)
T (0, w)

(u(0, w)),1
(φ(0, w)),1
(ψ(0, w)),1
(T (0, w)),1



a0 = e−λ1x[1− λ1λ2 (λ3 + λ4) + λ1λ3λ4
(λ1 − λ2) (λ1 − λ3) (λ1 − λ4)

+
λ1

2(λ2 + λ3 + λ4)

(λ1 − λ2) (λ1 − λ3) (λ1 − λ4)

− λ1
3

(λ1 − λ2) (λ1 − λ3) (λ1 − λ4)
]− e−λ2x[

λ1
2 (λ3 + λ4) + λ1λ3λ4

(λ2 − λ1) (λ2 − λ3) (λ2 − λ4)

− λ1
2(λ1 + λ3 + λ4)

(λ2 − λ1) (λ2 − λ3) (λ2 − λ4))
+

λ1
3

(λ2 − λ1) (λ2 − λ3) (λ2 − λ4)
]

−e−λ3x[
λ1

2 (λ2 + λ4) + λ1λ2λ4
(λ3 − λ1) (λ3 − λ2) (λ3 − λ4)

− λ1
2(λ1 + λ2 + λ4)

(λ3 − λ1) (λ3 − λ2) (λ3 − λ4))

+
λ1

3

(λ3 − λ1) (λ3 − λ2) (λ3s − λ4)
]− e−λ4x[

λ1
2 (λ2 + λ3) + λ1λ2λ3

(λ4 − λ1) (λ4 − λ2) (λ4 − λ3)

− λ1
2(λ1 + λ2 + λ3)

(λ4 − λ1) (λ4 − λ2) (λ4 − λ3)
+

λ1
3

(λ4 − λ1) (λ4 − λ2) (λ4 − λ3)
]

a1 = −e−λ1x[
λ2 (λ3 + λ4) + λ3λ4

(λ1 − λ2) (λ1 − λ3) (λ1 − λ4)
]− e−λ2x[

λ1 (λ3 + λ4) + λ3λ4
(λ2 − λ1) (λ2 − λ3) (λ2 − λ4)

]

−e−λ3x[
λ1 (λ2 + λ4) + λ2λ4

(λ3 − λ1) (λ3 − λ2) (λ3 − λ4)
]− e−λ4x[

λ1 (λ2 + λ3) + λ2λ3
(λ4 − λ1) (λ4 − λ2) (λ4 − λ3)

]

a2 = −e−λ1x[
(λ2 + λ3 + λ4)

(λ1 − λ2) (λ1 − λ3) (λ1 − λ4)
]− e−λ2x[

(λ1 + λ3 + λ4)

(λ2 − λ1) (λ2 − λ3) (λ2 − λ4)
]

−e−λ3x[
(λ1 + λ2 + λ4)

(λ3 − λ1) (λ3 − λ2) (λ3 − λ4)
]− e−λ4x[

(λ1 + λ2 + λ3)

(λ4 − λ1) (λ4 − λ2) (λ4 − λ3)
]

a3 = −e−λ1x[
1

(λ1 − λ2) (λ1 − λ3) (λ1 − λ4)
]− e−λ2x[

1

(λ2 − λ1) (λ2 − λ3) (λ2 − λ4)
]

−e−λ3x[
1

(λ3 − λ1) (λ3 − λ2) (λ3 − λ4)
]− e−λ4x[

1

(λ4 − λ1) (λ4 − λ2) (λ4 − λ3)
]
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Appendix II

Q1 = P1(Z1 +N1Z3) + P2

(
a03R5

)
+ P3

(
a03R9

)
− a03R13

Q2 = P1R1Z4 + P2

(
a00 + a02N6

)
+ P3

(
a00 + a02N11

)
− a02N14

Q3 = P1R2Z4 + P2

(
a02N7

)
+ P3

(
a00 + a02N11

)
− a02N15

Q4 = P1R3Z4 + P2

(
a02N8

)
+ P3

(
a02N12

)
−
(
a00 + a02N16

)
Q5 = P4R5Z4 + P5R9Z4, Q6 = P4 (Z1 +N6Z3) + P5N10Z3

Q7 = P4N7Z3 + P5 (Z1 +N11Z3) Q8 = P 4N8Z3 + P5N12Z3

Q9 = P5R5Z4 + P6R9Z4, Q10 = P5 (Z1 +N6Z3) + P6N10Z3

Q11 = P5N7Z3 + P6 (Z1 +N11Z3) Q12 = P 5N8Z3 + P6N12Z3

Q13 = a03R13 Q14 = a02N14 Q15 = a02N15 Q16 = a00 + a02N16

where:

P1 =
λ+ 2µ

βT0
P2 =

bα1

k1ω2βT0
P3 =

dα1

k1ω2βT0

P4 =
α1

k1ω2
P5 =

b1α1

αk1ω2
P6 =

γα1

αk1ω2

Z1 = −λ1D11 − λ2D12 − λ3D13 − λ4D14

Z2 = −λ1D21 − λ2D22 − λ3D23 − λ4D24

Z3 = −λ1D31 − λ2D32 − λ3D33 − λ4D34

Z4 = −λ1D41 − λ2D42 − λ3D43 − λ4D44

Y1 = −λ1D11e
−λ1x − λ2D12e

−λ2x − λ3D13e
−λ3x − λ4D14e

−λ4x

Y2 = −λ1D11e
−λ1x − λ2D12e

−λ2x − λ3D13e
−λ3x − λ4D14e

−λ4x

Y3 = −λ1D21e
−λ1x − λ2D22e

−λ2x − λ3D23e
−λ3x − λ4D24e

−λ4x

Y4 = −λ1D31e
−λ1x − λ2D32e

−λ2x − λ3D33e
−λ3x − λ4D34e

−λ4x

S1 = P1(Y1 +N1Y3) + P2 (l21) + P3l31 − l41

S2 = P1(R1Y4) + P2 (l22) + P3 (l32)− l42

S3 = P1(R2Y4) + P2 (l23) + P3 (l33)− l43

S4 = P1R3Y4 + P2 (l24) + P3 (l34)− (l44)

S5 = P4R5Y4 + P5R9Y4, S6 = P4(Y4 +N6Y3) + P5N10Y3

S7 = P4N7Y3 + P5(Y1 +N11Y3)

S8 = P 4N8Y3 + P5N12Y3

S9 = P5R5Y4 + P6R9Y4, S10 = P5(Y1 +N6Y3) + P6N10Y3

S11 = P5N7Y3 + P6 (Y1 +N11Y3)

S12 = P5N8Y3 + P6N12Y3
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D11 = 1− λ1λ2 (λ3 + λ4) + λ1λ3λ4
(λ1 − λ2) (λ1 − λ3) (λ1 − λ4)

+
λ1

2(λ2 + λ3 + λ4)

(λ1 − λ2) (λ1 − λ3) (λ1 − λ4)

− λ1
3

(λ1 − λ2) (λ1 − λ3) (λ1 − λ4)

D12 = −[
λ1

2 (λ3 + λ4) + λ1λ3λ4
(λ2 − λ1) (λ2 − λ3) (λ2 − λ4)

− λ1
2(λ1 + λ3 + λ4)

(λ2 − λ1) (λ2 − λ3) (λ2 − λ4))

+
λ1

3

(λ2 − λ1) (λ2 − λ3) (λ2 − λ4)
]

D13 = −[
λ1

2 (λ2 + λ4) + λ1λ2λ4
(λ3 − λ1) (λ3 − λ2) (λ3 − λ4)

− λ1
2 (λ1 + λ2 + λ4)

(λ3 − λ1) (λ3 − λ2) (λ3 − λ4)

+
λ1

3

(λ3 − λ1) (λ3 − λ2) (λ3 − λ4)
]

D14 = −[
λ1

2 (λ2 + λ3) + λ1λ2λ3
(λ4 − λ1) (λ4 − λ2) (λ4 − λ3)

− λ1
2 (λ1 + λ2 + λ3)

(λ4 − λ1) (λ4 − λ2) (λ4 − λ3)

+
λ1

3

(λ4 − λ1) (λ4 − λ2) (λ4 − λ3)
]

D31 = − (λ2 + λ3 + λ4)

(λ1 − λ2) (λ1 − λ3) (λ1 − λ4)
D32 = −

(λ1 + λ3 + λ4)

(λ2 − λ1) (λ2 − λ3) (λ2 − λ4)

D33 = − (λ1 + λ2 + λ4)

(λ3 − λ1) (λ3 − λ2) (λ3 − λ4)
D34 = −

(λ1 + λ2 + λ3)

(λ4 − λ1) (λ4 − λ2) (λ4 − λ3)

D41 = − 1

(λ1 − λ2) (λ1 − λ3) (λ1 − λ4)
D42 = − 1

(λ2 − λ1) (λ2 − λ3) (λ2 − λ4)

D43 = − 1

(λ3 − λ1) (λ3 − λ2) (λ3 − λ4)
D44 = − 1

(λ4 − λ1) (λ4 − λ2) (λ4 − λ3)

Γ =

∣∣∣∣∣∣∣∣
Q1 Q2 Q3 Q4

Q5 Q6 Q7 Q8

Q9 Q10 Q11 Q12

Q13 Q14 Q15 Q16

∣∣∣∣∣∣∣∣ Γ1 =

∣∣∣∣∣∣∣∣
−F 1 Q2 Q3 Q4

−F 1 Q6 Q7 Q8

−F 1 Q10 Q11 Q12

F2 Q14 Q15 Q16

∣∣∣∣∣∣∣∣
Γ2 =

∣∣∣∣∣∣∣∣
Q1 −F 1 Q3 Q4

Q5 −F 1 Q7 Q8

Q9 −F 1 Q11 Q12

Q13 F2 Q15 Q16

∣∣∣∣∣∣∣∣ Γ3 =

∣∣∣∣∣∣∣∣
Q1 Q2 −F 1 Q4

Q5 Q6 −F1 Q8

Q9 Q10 −F 1 Q12

Q13 Q14 F2 Q16

∣∣∣∣∣∣∣∣
Γ4 =

∣∣∣∣∣∣∣∣
Q1 Q2 Q3 −F1

Q5 Q6 Q7 −F1

Q9 Q10 Q11 −F1

Q13 Q14 Q15 F2

∣∣∣∣∣∣∣∣
and a00 = a0, a

0
2 = a2, a

0
3 = a3 at x = 0, A1 = Γ1

Γ , A2 = Γ2

Γ , A3 = Γ3

Γ , A4 = Γ4

Γ




