
Mechanics and Mechanical Engineering
Vol. 20, No. 4 (2016) 451–466
c⃝ Lodz University of Technology

Investigation and Prediction of Material Removal Rate
and Surface Roughness in CNC Turning of EN24 Alloy Steel

S. Dinesh
K. Rajaguru
V. Vijayan

Department of Mechanical Engineering
K. Ramakrishnan College of Technology

Tiruchirapalli, Tamil Nadu, India
dineshmechian@gmail.com

A. Godwin Antony

Department of Mechanical Engineering
Shivani College of Engineering and Technology

Samayapuram, Trichy, Tamilnadu, India

Received (29 May 2016)
Revised (26 July 2016)

Accepted (25 September 2016)

Every manufacturing or production unit should concern about the quality of the prod-
uct. Apart from quality, there exists other criterion, called productivity which is directly
proportional to the profit level. Every manufacturing industry aims at producing a large
number of products in relatively lesser time. In any machining process, it is most im-
portant to determine the optimal settings of machining parameters aiming at reduction
of production costs and achieving the desired product quality. If the problem is related
to a single quality attribute then it is called single objective optimization. If more than
one attribute comes into consideration it is very difficult to select the optimal setting
which can achieve all quality requirements simultaneously. . In this work, EN-24 alloy
steel work pieces were turned on Computer Numerical Controlled (CNC) lathe by using
Cemented carbide tool (coated). The influence of four cutting parameters, cutting speed,
feed rate, depth of cut, and tool nose radius on minuscule surface roughness and mate-
rial removal rate (MRR) were analyzed on the basis of Response Surface Methodology
approach. The experimental results were collected by following the Taguchi’s L16 mixed
Orthogonal Array design.

Keywords: Material Removal Rate (MRR), surface roughness, EN24 alloy steel, ce-
mented carbide tool, RSM approach.

1. Introduction

Datta S et al [1] attempted to solve the correlated multivariate optimization prob-
lem of submerged arc welding using PCA based hybrid Taguchi Method. The
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result of this method is compared with the grey Taguchi method results and proves
to be satisfactory. Lan T et al [2] studied the effect of the cutting parameters
feed, speed, depth of cut and tool nose runoff on the surface roughness and cutting
force. This shows 95.87% of accuracy in dimension for the predicted optimized
parameter values. Biswas C.K. et al [7] proposed their work on various methods
used for predicting the surface roughness of the machined components. Their ap-
proaches were classified into machining theory, experimental investigation, designed
experiments and artificial intelligence. Antony J et. al. [26] studied the problems
faced by the Taguchi method of optimization. They found that this is best suited
only for a single variable problem. For solving a multi variable optimization condi-
tion, the above method always brings some level of uncertainty in the results. For
overcoming this problem, the author proposes a powerful multivariate statistical
method called Principal Component Analysis (PCA). Feng et. al. [24] investigated
for the prediction of surface roughness in finish turning operation by developing
an empirical model through considering working parameters: work piece hardness
(material), feed, cutting tool point angle, depth of cut, spindle speed, and cutting
time. Data mining techniques, nonlinear regression analysis with logarithmic data
transformation were employed for developing the empirical model to predict the sur-
face roughness. Suresh et al (2002) focused on machining mild steel by Tin-coated
tungsten carbide (CNMG) cutting tools for developing a surface roughness predic-
tion model by using Response Surface Methodology (RSM). Genetic Algorithms
(GA) used to optimize the objective function and compared with RSM results. It
was observed that GA program provided minimum and maximum values of surface
roughness and their respective optimal machining conditions.

Lee et. al. [25] highlighted on artificial neural networks (OSRR-ANN) using a
sensing technique to monitor the effect of vibration produced by the motions of the
cutting tool and work piece during the cutting process developed an on-line surface
recognition system. The authors employed tri–axial accelerometer for determining
the direction of vibration that significantly affected surface roughness then analyzed
by using a statistical method and compared prediction accuracy of both the ANN
and SMR. Kohli et. al. [17] proposed a neural–network based methodology with
the acceleration of the radial vibration of the tool holder as feedback. For the sur-
face roughness prediction in turning process the back–propagation algorithm was
used for training the network model. The methodology was validated for dry and
wet turning of steel using high speed steel and carbide tool and observed that the
proposed methodology was able to make accurate prediction of surface roughness
by utilizing small sized training and testing datasets. Al–Ahmari [12] developed
empirical models for tool life, surface roughness and cutting force for turning oper-
ation. The process parameters used in the study were speed, feed, depth of cut and
nose radius to develop the machinability model. The methods used for developing
aforesaid models were Response Surface Methodology (RSM) and neural networks
(NN).

Doniavi et. al. [10] used response surface methodology (RSM) in order to
develop empirical model for the prediction of surface roughness by deciding the
optimum cutting condition in turning. The authors showed that the feed rate influ-
enced surface roughness remarkably. With increase in feed rate surface roughness
was found to be increased. With increase in cutting speed the surface roughness
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decreased. The analysis of variance was applied which showed that the influence of
feed and speed were more in surface roughness than depth of cut. B. Sidda Reddy
et al carried out the experimentation on CNC turning machine with carbide cutting
tool for machining aluminum alloys covering a wide range of machining conditions.
The ANFIS model has been developed in terms of machining parameters for the pre-
diction of surface roughness using train data. The Response Surface Methodology
(RSM) is also applied to model the same data. The ANFIS results are compared
with the RSM results.

2. Experimential set up

The machining tests are carried out on the specimen material in cylindrical form
which was 120 mm long and 35 mm in diameter with the help of coated cemented
inserts of two different nose radii on Batliboy Sprint 16 TC CNC lathe with a
variable speed of 50 to 50,000 rpm and a power rating of AC motor rated power
(continuous/30min rating) 5.5/7.5. For the present experiment work the three pro-
cess parameters at four levels and one parameter at two levels have been decided.
It is desirable to have two minimum levels of process parameters to reflect the true
behavior of output parameters of study. The method chosen here is the L16 orthog-
onal array of mixed level design. The tool inserts were made of cemented carbide
material for the machining operation.

Figure 1 Computer numerical controlled lathes

2.1. Work piece material – EN-24 alloy steel

Steel bars of 35 mm diameter and 120 mm length were used for the experimentation
processes. The chemical composition of the material is Carbon - 0.37%, Silicon -
0.29%, Manganese - 0.60%, Sulphur - 0.028%, Phosphorous - 0.028%, Nickel - 0.12%,
Chromium - 1.20%, Molybdenum - 0.201%, Copper - 0.15%, Titanium - 0.005%,
Vanadium - 0.03%, Aluminium - 0.026%, Niobium - 0.008%, and the rest is Iron.

2.2. Process variables and their limits

In the present experimental study, spindle speed, feed rate and depth of cut have
been considered as process variables. The working range of each parameter with
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their units is listed in table 1.

Table 1 Process variables and their limits

Parameters
Levels

1 2 3 4
Cutting speed: N (m/min) 110 165 210 275
Feed: F (mm/rev) 0.10 0.15 0.20 0.25
Depth of cut: D (mm) 0.4 0.8 1.2 1.6
Nose radius: NR (mm) 0.8 1.2 - -

2.3. Selection of experimental design

Based on Taguchi’s Orthogonal Array (OA) design, the L16 mixed array have been
selected and is mentioned in the Tab. 2.

Table 2 Process variables and their limits
Experiment No. Speed Feed Depth Of Cut Nose Radius
1 110 0.10 0.4 0.8
2 110 0.15 0.8 0.8
3 110 0.20 1.2 1.2
4 110 0.25 1.6 1.2
5 165 0.10 0.8 1.2
6 165 0.15 0.4 1.2
7 165 0.20 1.6 0.8
8 165 0.25 1.2 0.8
9 210 0.10 1.2 0.8
10 210 0.15 1.6 0.8
11 210 0.20 0.4 1.2
12 210 0.25 0.8 1.2
13 275 0.10 1.6 1.2
14 275 0.15 1.2 1.2
15 275 0.20 0.8 0.8
16 275 0.25 0.4 0.8

2.4. Material Removal Rate

Initial and final weights of work piece were noted. Machining time was also recorded.
Following equation is used to calculate the response Material Removal Rate (MRR).

MRR =
Initial weight of workpiece – Final weight of workpiece

Density × Machining time
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2.5. Surface Roughness

Surface roughness can generally be described as the geometric features of the sur-
face. Surface roughness measurement is carried out by using TR 100 surface rough-
ness tester. The Roughness measurements, in the transverse direction, on the work
pieces has been repeated three times and average of three measurements of surface
roughness parameter values has been recorded in table.

3. Analysis of results

The experiments were conducted to study the effect of process parameters over
the output response as designed in the table. The experimental results of Surface
Roughness and Material Removal Rate are given in the table 3.

Table 3 Response values from experimental work

S. No. MRR (mm3/min) SR (µm)
1 2883.79 0.43
2 10710.34 0.66
3 19617.83 1.32
4 31528.66 1.31
5 9372.42 0.50
6 5661.71 0.61
7 40245.46 1.39
8 33970.27 1.46
9 20544.24 0.45
10 36746.60 0.71
11 9002.70 1.14
12 34444.10 1.51
13 31705.50 0.53
14 32134.40 0.66
15 25207.62 1.43
16 12974.70 1.99

3.1. Analysis of variance

ANOVA is the statistical technique used to calculate the size of the difference be-
tween data set. The elements of ANOVA table are source of variance, sum of
squares, degrees of freedom, mean square, f ratio, and the probability associated
with the F ratio. Table 3 shows the ANOVA table for experimental data of Mate-
rial Removal Rate and Surface Roughness as dependent variables, and Speed, Feed,
Depth of cut & Nose radius as independent variables.

3.1.1. Material Removal Rate data analysis

The F-value of 35.86 implies the model is significant. There is only a 0.05% chance
that a ”Model F-Value” this large could occur due to noise. Values of ”Prob >
F” less than 0.0500 indicate model terms are significant. The ”Adj R-Squared” of
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0.9587. ”Adeq Precision” measures the signal to noise ratio. A ratio greater than
4 is desirable. For this model, the ratio of 17.197 indicates an adequate signal.
Therefore the model can be used to navigate the design space.

3.1.2. Surface Roughness data analysis

The F-value of 11.92 implies the model is significant. There is only a 0.68% chance
that a ”Model F-Value” this large could occur due to noise. Values of ”Prob >
F” greater than 0.1000 indicate the model terms are not significant. The ”Adj R-
Squared” of 0.8792. ”Adeq Precision” measures the signal to noise ratio. For this
model the ratio of 11.929 indicates an adequate signal. Therefore the model can be
used to navigate the design space.

Table 4 ANOVA table for the responses

Material Removal Rate (MRR)
Source Sum

of Squares
DOF Mean square F-value p-value

Prob > F
Model 2.29E+09 10 2.29E+08 35.855 0.0005
A-Speed 48843193 1 48843193 7.6456 0.0396
B-Feed 1216640 1 1216640 0.1904 0.6807
C-Depth of cut 62882939 1 62882939 9.8433 0.0257
D-Nose radius 950277.5 1 950277.5 0.1488 0.7156
AB 37931016 1 37931016 5.9375 0.0589
AC 38903873 1 38903873 6.0898 0.0567
AD 1238504 1 1238504 0.1939 0.6781
BC 27474757 1 27474757 4.3007 0.0928
BD 15018596 1 15018596 2.3509 0.1858
CD 38755726 1 38755726 6.0666 0.0570
Residual 31941915 5 6388383

Surface Roughness (SR)
Source Sum

of Squares
DOF Mean square F-value p-value

Prob > F
Model 3.428187 10 0.342819 11.921 0.0068
A-Speed 0.002938 1 0.002938 0.1022 0.7622
B-Feed 0.226503 1 0.226503 7.8763 0.0377
C-Depth of cut 0.002923 1 0.002923 0.1016 0.7628
D-Nose radius 0.003359 1 0.003359 0.1168 0.7464
AB 0.047427 1 0.047427 1.6492 0.2553
AC 0.002365 1 0.002365 0.0823 0.7858
AD 0.009445 1 0.009445 0.3284 0.5914
BC 0.028654 1 0.028654 0.9964 0.3640
BD 0.032114 1 0.032114 1.1167 0.3390
CD 0.023937 1 0.023937 0.8324 0.4034
Residual 0.143788 5 0.028758
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3.2. Effect of process parameters on MRR

The Figs. 2–7 shows the effect of various process parameter combinations on the
Material Removal Rate in turning of EN24 alloy steel work piece turned using coated
cemented carbide.

The Fig. 2 shows the effect of speed and feed on MRR. Based on the graph,
if the speed is increased the MRR decreases. The minimum speed of 110m/min
produces higher MRR. The minimum feed of 0.10 mm/min produces higher MRR.
Hence higher MRR is achieved by the combination of minimum feed and minimum
speed. The Fig. 3 shows the effect of speed and Depth of cut on MRR. Based on
the graph, it is clear that MRR decreases with increase in speed. The minimum
speed of 110m/min produces higher MRR. The depth of cut has an inverse effect on
MRR. The maximum depth of cut of 1.0 mm produces higher MRR. Hence higher
MRR is achieved by the combination of minimum feed and maximum depth of cut.

Figure 2 Effect of speed and feed on MRR

Figure 3 Effect of speed and depth of cut on MRR
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The Fig. 4 shows the effect of speed and Nose radius on MRR. From the graph,
the increase in speed decreases MRR. The minimum speed of 110m/min produces
higher MRR. The Nose radius has a less significant effect on MRR. Hence higher
MRR is achieved by the combination of minimum feed and at all Nose radius values.
The Fig. 5 shows the effect of feed and Depth of cut on MRR. From the graph,
increase in feed increases the MRR. The maximum feed of 0.25 mm/rev produces
higher MRR. Similarly, increase in depth of cut increases MRR. The maximum
depth of cut of 1.0 mm produces higher MRR. The highest value of MRR is achieved
from the combination of maximum feed and maximum depth of cut.

Figure 4 Effect of speed and nose radius on MRR

Figure 5 Effect of feed and depth of cut on MRR

The Fig. 6 shows the effect of feed and nose radius on MRR. From the graph, it is
clear that MRR increases with increased feed. The maximum feed of 0.25mm/rev
produces higher MRR. The MRR remains same throughout the range of nose radius.
So, the nose radius has no significant effect on MRR. Hence higher MRR is achieved
by the combination of minimum nose radius and maximum feed. Fig. 7 shows the
effect of nose radius and depth of cut on MRR. The MRR tends to increase with
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the increase in depth of cut where the maximum MRR is achevied at 1 mm. The
MRR remains constant with variying nose radius. The maximim MRR is achievied
with the combination of maximum depth of cut and minimum nose radius.

Figure 6 Effect of feed and nose radius on MRR

Figure 7 Effect of depth of cut and nose radius on MRR

3.3. Effect of process parameters on SR

The effect of speed and feed over SR is shown in the Fig. 8. The minimum SR
occurs at a speed of 150 m/min and feed rate of 0.10 mm/rev. The SR tends to
increase with increasing feed. The SR remains constant through the range of speed
which proves that speed does not have any significant effect on SR. Hence, the
minimum SR is obtained at the combination of minimum feed and minimum speed.
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Figure 8 Effect of speed and feed on SR

Figure 9 Effect of speed and depth of cut on SR

Fig. 9 illustrates the effect of speed and depth of cut over SR. The SR tends to
decrease with the increase in speed with the minimum SR occuring at maximum
speed of 275 m/min. when feed increases, the SR increases. Therefore, the minimum
SR prevails with the combination of maximum speed and maximum depth of cut.

Fig. 10 indicates the effect of speed and nose radius on SR in which the SR
decreases with the increase in speed. The minimum SR ouccred at the maximum
speed of 275 m/min. The increase in nose radius leads to simulatnious decrease in
SR. Howerver, the cobination of maximum speed and maximum nose radius proved
to establish minimum SR. Fig. 11 shows the effect of feed and depth of cut on SR.
The SR tends to increase with the increase in feed where in the minimum SR is
obtained at minimum feed of 0.10 mm/rev. The SR remains constant with repesct
to variying depth of cut which proves that depth of cut has no significant effect
on SR. Henceforth, the combination of minimum feed and miniumum depth of cut
produced the minimum SR.



Investigation and Prediction of Material Removal Rate ... 461

Figure 10 Effect of speed and nose radius on SR

Figure 11 Effect of feed and depth of cut on SR

Fig. 12 depicts the impact of feed and nose radius on SR. The SR tends to
increase with increasing feed. The minimum SR was obtained at a minimum feed
of 0.10 mm/rev. The nose radius had no significatnt effect on SR, since the SR
remains constant over the range of nose radius. In combination, the minimum SR
is obtained at minimum feed and minimum nose radius.

Fig. 13 indicates the effect of nose radius and depth of cut on SR wherein the
SR increases with the increase in depth of cut with the minimum SR encontered at
the minimum depth of cut of 0.10 mm. The nose radius had no significance over
SR. Hence in combination, the miniumum SR was obtained at minimum depth of
cut and minimum nose radius.

3.4. Regression analysis

The relationship between dependent and independent variable requires a statement
of statistical model. This work contains more than one independent variable, so that
it needed a regression model. The following equations are the empirical relationship
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between independent and dependent variables. Here, N, F, D and NR are known
as Speed, Feed, Depth of cut and Nose radius respectively.

SR = −0.82916− 2.22854E − 003 ∗N + 6.95788 ∗ F + 0.45341 ∗D
+1.01623 ∗NR+ 0.038829 ∗N ∗ F − 1.15533E − 003 ∗N ∗D (1)

−3.49357E − 003 ∗N ∗NR− 2.78279 ∗ F ∗D
−4.47157 ∗ F ∗NR+ 0.43331 ∗D ∗NR

MRR = 34142.69796− 287.32334 ∗N − 2.53741E + 005 ∗ F
+2980.26857 ∗D − 2660.60951 ∗NR+ 1098.08365 ∗N ∗ F (2)

+148.16659 ∗N ∗D + 40.00489 ∗N ∗NR+ 86169.40215 ∗ F ∗D
+96699.89809 ∗ F ∗NR− 17435.41323 ∗D ∗NR

Figure 12 Effect of feed and nose radius on SR

Figure 13 Effect of depth of cut and nose radius on SR

3.5. Comparison between experimental and RSM value for MRR

The developed models were validated with 16 data sets of experimental design
used for the model development. The predicted values of Material Removal Rate
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were compared with the corresponding experimental values and the percentage of
deviation is tabulated in Tab. 5.

Figure 14 Comparison plot for Experimental & Predicted MRR

The average deviation between experimental results and RSM model results are
-1.1117. Thus the equation 1 can be used to predict the MRR for any combinations
of the turning parameters within the range of experiments. The Fig. 14 shows the
validation results of experimental and RSM value. The validation results show that
the experimental and RSM value has smaller deviation.

Table 5 Actual vs predicted MRR values

Exp. No. Experimental MRR Predicted MRR % of Deviation
1 2883.79 3948.77 -26.97
2 10710.34 10194.83 5.06
3 19617.83 19950.63 -1.67
4 31528.66 32234.58 -2.19
5 9372.42 7908.61 18.51
6 5661.71 5757.25 -1.66
7 40245.46 39988.34 0.64
8 33970.27 33113.32 2.59
9 20544.24 18335.41 12.05
10 36746.60 39445.33 -6.84
11 9002.70 11435.24 -21.27
12 34444.10 31689.49 8.69
13 31705.50 31837.69 -0.42
14 32134.40 32653.24 -1.59
15 25207.62 24529.06 2.77
16 12974.70 13727.39 -5.48

3.6. Comparison between experimental and RSM value for SR

The developed models were validated with 16 data sets of experimental design used
for the model development. The predicted values of Surface roughness were com-
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pared with the corresponding experimental values and the percentage of deviation
is tabulated in Tab. 6.

Figure 15 Comparison plot for experimental and predicted SR

The average deviation between experimental results and RSM model results are
0.645911. Thus the equations can be used to predict the surface roughness value
for turning of EN24 with any combinations of chosen parameters within the range
of experiments. The figure 15 shows the validation results of experimental and
RSM value. The validation results show that the experimental and RSM value has
smaller deviation.

Table 6 Actual vs predicted SR

Exp. No. Experimental SR Predicted SR % of Deviation
1 0.43 0.35 21.36
2 0.66 0.78 -15.76
3 1.32 1.20 9.60
4 1.31 1.39 -5.81
5 0.5 0.53 -6.43
6 0.61 0.68 -9.87
7 1.39 1.20 16.12
8 1.46 1.50 -2.56
9 0.45 0.42 7.82
10 0.71 0.88 -19.61
11 1.14 1.06 7.46
12 1.51 1.51 0.23
13 0.53 0.46 16.38
14 0.66 0.75 -12.12
15 1.43 1.35 5.56
16 1.99 2.03 -2.05



Investigation and Prediction of Material Removal Rate ... 465

4. Conclusion

The past works revealed the dominance of various parameters for different process
which involved the study of MRR, surface roughness and tool wear. In our work,
the experimental investigation involves turning of EN24 alloy steel using coated
cemented carbide inserts. The main objective is to develop an empirical model
using Response Surface Methodology. The parameter Speed and Depth of cut has
significant effect on MRR. The parameter Feed has significant effect on Surface
Roughness. The RSM model has smaller deviation from experimental data. This
confirms that the developed model can be used to predict the MRR and surface
roughness value in an effective manner. The empirical model for predicting the val-
ues of surface roughness and Material Removal Rate is developed successfully. Also
the interaction effects of various parameters on the output variables were studied.
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