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A series of experiments was carried out to examine the effects of elastic–plastic deforma-
tion on the state of stress and the flow stress mechanism under static tension. The strain
distribution determined from the fringe pattern using the Moire method allows one to
determine the strain and the crack propagation of not–notched specimens an isotropic
and elastic–plastic materials. In the analysis of stress the method of calculating using the
bipolar coordinate is proposed. The theoretical model is divided into two elements and
the condition of incompressibility is satisfied in each element. The proposed method is
compared with the elastic-plastic FEM (ANSYS 12, 14) and it is satisfied approximately.
The tensile test is aimed to verify the mathematical model that can be applied in the
logarithmic stain in further computations.

Keywords: stress–strain relationship; bi–polar coordinates; moiré method; finite element
method.

1. Introduction

The results of experimental investigations are the basic element in formulating of
theoretical solutions. However, despite of dynamic development in measuring tech-
niques, an interpretation of test results can be difficult due to a limited spectrum
and range of applicability of the apparatus used in tests. It seems that an appli-
cation of latest calculation methods allows one to determine the boundary states
and to failure phases of a structure or an element on the basis of material proper-
ties. However, investigation methods are continuously modernised and the results
of some research are protected by patents and made public unwillingly in numerous
cases, thus such data should be supplemented with additional measurements, e.g.,
of strains in the failure phase, the determination of crack resistance, etc.

Strength resistance properties of materials are the basic element that enables
calculations and formulation of theoretical solutions, however due to their limited
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spectrum in case of complex stresses and strains, their explicit interpretation can
be impeded. As a classical example of such an approach, one can consider a simple
tensile test as the basis for further calculations. The analysis of the failure phase
under tension has been presented, for example in [1], [3], [6], [23] and al.

Tension diagrams that characterize the material properties are treated as the
fundamental element of numerical computations. Testing machines that has been
using currently allow one to describe precisely tensile tests, but their software en-
ables the determination of only some parameters that define the material properties.
The application of results of typical strength tests into numerical computations is
incurred with errors that follow from the simplifications assumed. A lack of mathe-
matical model, which would describe an actual σ − ε (stress–strain) relationship in
the whole range of load, compels designers to use simplified assumptions or to con-
duct additional recalculations in order to describe the complete tensile behaviour,
including the failure phase. The investigations carried out by the author allow one
to analyse subsequent tension phases, a failure mode and an occurrence of sliding
planes and an actual σ − ε relationship. The analysis of stress and strain states
for steel was made on an Instron testing machine. The displacement and strain
measurements presented in this study were made with strain gauges, an exten-
someter and by means of the moiré–fringe technique [7, 14] and all. A detailed
analysis of such measurements is founded in the next section of the present study.
A description of the stress-strain relationship, which takes into consideration strain
hardening, and next necking until the moment of rupture, along with a description
of breaking stresses, allows one to build such a mathematical model in the whole
range of load, which accounts for the fracture formation and the element failure.

The way the strains are described in bi–polar coordinates, which has been based
on the experimental investigations, makes it possible to employ the results in the
numerical computations, wherever we are interested in stress states in the failure
phase. The real σ − ε (stress–strain) relationship used in calculations (in elastic–
plastic materials after strain hardening) comprises a description of strains until the
moment of an occurrence of necking, next it describes a stress distribution after the
occurrence of necking, and the process of fracture itself is described on the basis of
tests of specimens with existing fissures.

The investigations of the fracture process and the analysis of causes of the scratch
occurrence are the object of numerous scientific investigations and studies, and the
complete range of methods and solutions, which examples are listed at the end of
this study, fall beyond the scope of the present study. In this study, some test and
calculation methods that can be employed to develop a model of structures, which
then can be used in the engineering practice in the whole range of loading and
which accounts for element fracture and failure investigations have been presented.
The numerical calculation results, and especially the finite element method, are
now widely used in structure calculations. For instance, the professional ANSYS
software allows for carrying out all kinds of computations. In this program in the
range of elastic–plastic strains, the logarithmic stain εtis assumed instead of the
conventional strain ε, and the value of the Poisson’s ratio νpl(ε) is assumed as a
constant and equal to 0.5, which agrees approximately with the real state of stresses
and strains.



Mathematical and Experimental Analysis Tension ... 469

2. Results of tensile tests

The diagrams F (∆l) or σ(ε) obtained from the testing machine should be inter-
preted so that the diagram σ(ε) should correspond to real σ− ε relationships. The
characteristic quantities, on the basis of which the σ−ε relationship can be formed,
are the forces corresponding to the physical yield point or the proof stress, the max-
imum force and the strain corresponding to it, and the force acting when the speci-
men is necked and ruptured. For each of these forces, the cross-sectional dimensions
can be measured and the stresses calculated, and then an approximate variability of
the function σ(ε) can be calculated. The values obtained in the strength tests and
the quantities determined on their basis are depicted in Fig. 1. The plot σ(ε) ob-
tained from the testing machine is a conventional plot, the value of the force divided
by a constant value of the cross-section is given on the vertical axis, whereas the
elongation related to the initial length, that is to say, the relative strain (also called
the conventional strain) is presented on the horizontal axis. Thus, as a matter of
fact this diagram is a copy of the F(∆l) plot, in another system of coordinates. The
quantities obtained on the basis of the strength tests are as follows:

1. limit of proportionality σp = σprop and the strain corresponding to it
εp = εprop and the Young’s modulus E,

2. proof stress or physical yield point - R02 , Re (σ0 = σpl and the strain corre-
sponding to it ε0 = εpl),

3. maximum force Fmax - tensile strength Rm , real stress (σrz) corresponding
to Rm, force corresponding to necking Fkr – maximum stress (σmax) corre-
sponding to rupture.

Beside standard results given in typical reports, actual values of stresses correspond-
ing to the tensile strength and the rupture force are given as well.
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Figure 1 Tension diagrams F (∆l) – force–elongation: a) diagram obtained from the Instron
testing machine, b) general diagram with characteristic quantities that enable a description of the
material properties
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Note : the real stresses have been defined as a ratio of the maximum force to the
area of the actual cross–section (according to formula 3), on the assumption that
we have uniform tension until the maximum tensile force is achieved, e.g.:

σrz =
Fmax

b(ε) · h(ε)
=

Fmax

b0h0 · (1− εkr · νpl)2
= 357.2MPa

and when this force is exceeded, we can observe a further development of plastic
strains and an occurrence of necking, and the maximum stresses have been defined
as a ratio of the rupture force to the necked cross–section area Ap:

σmax =
Fkr

Ap
=

Fmax

bminhmin
= 510.6MPa

2.1. Description of the displacement measurement method and results
of tests and calculations

Displacements of the specimen surface in the point of an occurrence of necking and
fracture just before failure were determined by means of the moiré–fringe technique.
Owing to the simplicity of this method and relatively large strains, a shadow method
was employed [7, 14]. The measurement principle are shown in Fig. 2. Moiré half–
tone screens were located parallel to the specimen surface, then the specimens were
illuminated at the angle φ = 30o÷40o, and the moiré–fringe patterns corresponding
to perpendicular displacements that characterise changes in thickness and sliding
lines were photographed.

j1

mesh lines

w

S = n×e
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j2

Specimen surface moiré–fringe patterns
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j1= 40°
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Figure 2 Displacement measurement principle on the specimen surface



Mathematical and Experimental Analysis Tension ... 471

Next, the results of tests and calculations were compared for the given values:
e = 1/13 mm, φ1 = 40o, φ2 = 34o, w ∼= 0.051mm. The difference in height
corresponding to the distance S between the neighbouring moiré-fringe patterns
was calculated according to the formula:

w =
e

tgφ1 + tgφ2
(1)

where:
e – mesh pitch (distance between mesh lines per 1 mm),
w – difference in height corresponding to the length S between the subsequent

moiré–fringe patterns,
φ1 – angle of incidence of the parallel light beam,
φ2 – camera inclination angle,
w = 0.408 mm, 2w = 0.816 mm, hs = 0.54÷ 0.66 mm,
hmin = 1.356÷ 1.476 mm (1.4 mm).

Specimen surface – necking prior to fracture

0.255

0.255
1.05

40.8

40.0 0.4

Cross-section at the point of rupture

Specimen surface – necking prior to fracture

0.408

0.408
0.54

40.8

40.0 0.4

Cross-section at the point of rupture

a)

b)

Figure 3 Distribution of the moiré–fringe patterns: a) occurrence of necking, b) prior to rupture
on the surface (in the middle of the specimen) and changes in the cross-section at the point of
rupture obtained with the moiré–fringe technique

2.2. Theoretical description of tension – modification of the Ramberg–
Osgood curve

On the basis of physical and geometrical relations for plain stress, strains and
stresses can be calculated if we characterize the material by the Ramberg–Osgood
curve [3,6,8], [12,13]:

εplij =
3

2
αεo

(
σe

σo

)n−1
Sij

σo
(2)
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The non–linear relationship σ − ε is usually assumed in the form (assuming for
simplicity that p = 1/n ) [3]:

for ε ≤ ε0 σ =

(
σ0

ε0

)
ε

(3)

for ε > ε0 ε = α ε0

(
σ

σ0

) 1
p

⇒ σ =
1

α
σ0

(
ε

ε0

)p

According to the author’s point of view, an effect of transverse strains should
be considered under large strains. To simplify the issue (for large plastic strains
or elastic–plastic strains), one can assume that the dimensions of the rectangular
cross–section (b0 × h0) change according to the following relationship:

b(εx) = b0 (1− νplεy) , h(εz) = h0 (1− νplεy) , εx = εz = −νplεy (4)

and:

for ε > ε0, the equivalent Poisson’s ratio for elastic–plastic materials, according to
[3, 8, 9], takes the form: νpl =

1
2 − 1−2ν0

2E0

σ
ε

The Poisson’s ratio νpl is a function of strain and varies during the process of
deformation νpl(ε). After the substitution of:

α = 1 and E0 =
σ0

ε0
σ = σ0

(
ε

ε0

)p

(5)

νpl =
1

2
− 1− 2ν0

2

(
ε

ε0

)p−1

(6)

where: ν0 ∼= 0.3.

In individual phases of tension, we can determine approximately strains on the
basis of tests, having the initial dimensions and the tension diagram in form (5 ).

Figure 4 An examples of the distributions of the moiré-fringe patterns corresponding to an
occurrence of the plastic strain zone, then fractures in the middle, and, consequently, the failure
of the specimen
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2.3. Conventional and logarithmic strain

Other methods of the description of the relationship F (ε) have been presented
in [2, 4, 6, 9, 24]. Starting from the logarithmic strains εt proposed by Ludwik
[11], the conventional strain ε is related to the logarithmic one εt by the following
relationship: εt = ln(1 + ε). An elementary increment of the conventional strain
(dε) expresses a change in the length with respect to the initial length l0, whereas
an increment of the logarithmic strain dεt expresses a change of the length with
respect to the instantaneous length l. These strains are written as follows:

dε =
dl

l0
⇒ ε =

l − l0
l0

dεt =
dl

l
→ εt = ln

l

l0
(7)

where: l = l0(1 + ε) and thus we obtain:

εt = ln(1 + ε) (8)
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Figure 5 Changes in the Poisson’s ratio νpl(ε) according to formula (6) as a function of strain
ν(ε) for ν0 = 0.3 and p = 0.1

Taking into account the above–mentioned assumptions, we can calculate the value
of the tensile force from the formula:

F = σ(ε)A(ε) (9)

where the stresses σ(ε) and the cross–section A(ε) are functions of strains. Starting
with the condition of instability in tension, that is to say, for F = Fmax, ∂F/∂ε1 = 0
(on assumption that ε1 corresponds to the tension direction, and ε2 and ε3 are main
strains perpendicular to ε1), the following has been obtained:

dF

dε1
=

dσ

dε1
A+ σ

dA

dε1
= 0 where: A = A0(1 + ε2)(1 + ε3) = A0e

εt2eεt3 (10)
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Having taken into account the incompressibility condition that is defined by the
logarithmic dilatational strain:

∆V = ln(1 + ∆V ) = εt1 + εt2 + εt3 ∆V = 0

εt1 + εt2 + εt3 = 0 → εt2 + εt3 = −εt1 and A1 = A0e
εt1

we obtain:
dA

dεt1
= −A0e

εt1 = −A

Having substituted the above-mentioned equation into (10) and having divided
it by A, we get the condition of instability in tension as follows:

dσ

dε1
= σ1 (11)

The conventional dilatational strain (∆V) is equal to:

∆V = (1 + ε1)(1 + ε2)(1 + ε3)− 1 = J1 + J2 + J3

J1, J2, J3 – are invariants of the strain tensor. Under large strains, the assumption
that the conventional dilatational strain can be expressed only by the first invariant
of the strain tensor, i.e.
∆V ∼= ε1 + ε2 + ε3 = J1, – is a kind of approximation, and thus does not present
precisely the dilatational strain. Bearing in mind the above–mentioned assumptions,
the value of the tensile force on the basis of (10) is equal to:

F = σ(ε)A0e
−εt1

or, if:
eεt1 = 1 + ε1

and:
ε1 = eεt1 − 1

then:

F = σ(ε)
A0

1 + ε1
(12)

Assuming in the calculations the relationship σ(ε) according to formula (3) for the
rectangular cross–section A0 = b0h0, we obtain the value of the force as a function
of strains:

F = σo

(
ε

εo

)p
b0h0

1 + ε
(13)

Stress according to conventional strains σeng(MPa) ”engineering stress” has been
shown in Fig. 10.

Stress as a function of logarithmic strains σreal(MPa) σeng(ε) = σo

(
ε
εo

)p
Tension diagrams σ(ε) obtained according to formula (14), as a function of

logarithmic strains according to formula (8) is presented in Fig. 7.

σ(ε) = σreal =
F (1 + ε)

A0
σreal(ε) = σeng(ε) (1 + ε) (14)
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3. Theoretical description of strains in bi–polar coordinates - generali-
sation of the Bridgman solution

The analysis of the state of strain and stress in necking has been described in [1, 4]
and al. However, the state of stress has been generally analysed in necking and a
description of strains has been presented in cylindrical coordinates. In the present
study, the state of strain and stress has been described in the whole specimen
(neglecting the gripped parts only) with bi-polar coordinates (these coordinates
have been described, among others, in books [3], [9]). The strain distributions
corresponding to the phase prior to the specimen fracture in bi-polar coordinates
are shown in Fig.7.
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Figure 6 Tension diagrams: 1−σ(ε) according to conventional strains σeng according to formula
(5), 2 – according to (14) as a function of logarithmic strains

The lines showing main strains obtained experimentally can be described approx-
imately in bi–polar coordinates by dividing the specimen into two basic elements:
necking in the place of rupture and the ”gripped” part that is subject to smaller
plastic strains (Fig. 8). The location of necking has been described by means of
the variables: ζ, α, β.

ζ = α+ iβ and ζ = ln
a+ z

a− z
where: z = x+ iy

x =
a sinh (α)

cosh (α) + cos (β)
y =

a sin (β)

cosh (α) + cos (β)

(15)

α = ln

√
(x+ a)2 + y2√
(x− a)2 + y2

β = arctan
y

a+ x
− arctan

y

a− x

ρ1 =
a1

|shαo|
R1 =

a1
|sinβo|

d1 = a1 |cothαo| r1 = a1

∣∣∣tanh αo

2

∣∣∣
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Figure 7 Bi–polar coordinates assumed in the calculations

Strains in the part subject to smaller plastic strains have been also presented in
the bi–polar coordinates η, R2 and ξ, ρ2. For the ”gripped” part, strains have been
described through a transformation of the coordinate system (rotation by 90˚ and
translation by L) with an exchange of variables. The lines α = const transform into
the lines ξ, the lines β = const transform into the lines η = const (ζ2 = ξ + iη).

x2 =
a2 sin (η)

cosh (ξ) + cos (η)
y2 = l1 −

a2 sinh (ξ)

cosh (ξ) + cos (η)

l1 =
a1 sinβ

coshα+ cosβ
+

a2 sinh ξ

cosh ξ + cos η
ρ2 =

a2
|shξ|

(16)

R2 =
a2

|sin η|
b0 = 2a2

∣∣∣tg ηo
2

∣∣∣

X1

x=const
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Figure 8 Bi–polar coordinates – division into two basic elements: necking and the rupture point,
and the ”gripped” part
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The solution to the problem in cylindrical coordinates is presented in, for instance,
[1, 4]. In these references, an approximate integration of the equations of equilibrium
for specimens with the circular cross–section has been performed. In the case of flat
specimens, an analogous method can be used. The description of strains in bi–polar
coordinates enables a division into two basic elements: necking (point of rupture)
and a part that is subject to smaller plastic strains.

3.1. Calculations of strains

The strains corresponding to necking, obtained on the basis of the experimental
data, can be described in bi–polar coordinates. The specimen length subject to
necking – LU2 = 2l1, the radii of main curvatures ρ2 and R2, the specimen width
b1 are equal to, respectively:

l1 =
a1 sinβ

coshα+ cosβ
+

a2 sinh ξ

cosh ξ + cos η
ρ2 =

a2
|shξ|

(17)

R2 =
a2

|sin η|
b1 = a2

∣∣∣tg ηo
2

∣∣∣
In the upper part, the variables ξ, η have to satisfy the conditions 0 ≤ η ≤ η0, –
ξ0 ≤ ξ ≤ 0. On the other hand, it has been assumed that the dimensions of the
cross–section vary according to relationship (4) where: ∆ε = εmax − εkr and the
length l1 is equal to half the length of LU2, hence l1 = 0.5LU2,

LU2 = L01(1 + εkr) (1 + ∆ε)

Taking into account relationships (16) and (17) and the conditions of continuity
along the joint of the lower and upper part, we obtain a system of equations that
allows us to describe strains in bi–polar coordinates:

b0 (1− νplεkr) = 2a2

∣∣∣tg ηo
2

∣∣∣
b0 (1− νpl · εkr) (1− 2νpl∆ε) = 2ta1

∣∣∣tghαo

2

∣∣∣
l1 =

a1 sin (β0)

1 + cos (β0)
+

a2 sinh (ξ0)

cosh (ξ0) + 1
(18)

a1 sinh(α0)

cosh(α0) + cos(β0)
=

a2 sin (η0)

cosh (ξ0) + cos (η0)

a1
|sinβo|

=
a2

|shξ0|
l1 =

a1 sin (β0)

cosh (α0) + cos (β0)
+

a2 sinh (ξ0)

cosh (ξ0) + cos (η0)

Additionally, it is known that:

sin2 β0 + cos2 β0 = 1 cosh2 α0 − sinh2 α0 = 1

sin2 η0 + cos2 η0 = 1 cosh2 ξ0 − sinh2 ξ0 = 1

An example: the data for calculations are assumed on the basis of the experimental
investigations. The initial dimensions are as follows: b0 = 60.0 mm, l0 = 140 mm,
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h0 = 1.86 mm, l1 = 93.147 mm, the coefficient of deformation νpl, corresponding
to the Poisson’s ratio, has been calculated according to (6), the values of strains
corresponding to the maximum tensile force εkr and the force corresponding to
rupture εmax are equal to εkr = 0.2, εmax = 0.375 (εmax = 0.44), respectively. The
dimensions of the specimen after it has been subjected to strain and necking are as
follows: b1 = 54.06 mm, b2 = 47.64 mm, bmin = 40.08 mm → b1 = b0(1−2νpl∆εk).
Distribution of strains in the failure are shown in Fig. 9. Having solved system
of equations (18), we obtain the parameters that describe changes in the specimen
dimensions corresponding to necking in bi–polar coordinates:
a1 = 112.18 mm, ρ1 = 304.09 mm, α0 = 0.361, β0 = 0.795, R1 = 157.14 mm
and a2 = 128.76 mm, ρ2 = 157.1 mm, η0 = 0.414, R2 = 280.8 mm, ξ0 = - 0.748.
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Figure 9 Distribution of strains in the failure phase for St3s and St4s steel and the strain lines in
bi–polar coordinates, with a division into two basic elements: the point of rupture and the gripped
part

Employing the equations of equilibrium for the Cartesian system of coordinates (x,
y), assumed for the whole specimen, the state of strain in the phase prior to rupture
can be described:

∂σx

∂x
+

∂τxy
∂y

= 0
∂τxy
∂x

+
∂σy

∂y
= 0

Assuming that the relationships between main strain lines in the phase of plastic
yield can be described in approximation by the proportions (Fig. 7):

r1
x

=
x+ 2ρ

r1 + 2ρ1
⇒ 1

ρ
=

2x

r21 + 2ρ1r1 − x2
(19)

Next, assuming that:

τxy =
σy − σx

2
sin 2φ ≡ σintφ for φ → 0 sin 2φ ∼= 2φ φ ∼=

y

ρ
(20)
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for y = 0 σy − σx = σint on the basis of the first equation of equilibrium:

∂τxy
∂y

= σint
∂φ

∂y

∂σx

∂x
= −σint

2x

r21 + 2ρ1r1 − x2
⇒ σx = σint ln

(
r21 + 2ρ1r1 − x2

)
+ C

The constant C can be calculated from the condition for x = r1 σx= 0 , then for
y → 0

σx = σint ln
r21 + 2ρ1r1 − x2

2ρ1r1
σy = σint

(
1 + ln

r21 + 2ρ1r1 − x2

2ρ1r1

)
(21)

whereas, for y ̸= 0, one should check if the second equation of equilibrium and
boundary conditions are fulfilled.

Assuming that

τxy ≡ σintφ = σint ·
2xy

r21 + 2ρ1r1 − x2

on the basis of the second equation of equilibrium, we obtain:

σy = −σint

(
y2

r21 + 2ρ1r1 − x2
+

2x2y2

(r21 + 2ρ1r1 − x2)2

)
+ C2

hence, the constant C2 can be calculated if we know the stress σy for y = 0 according
to formula (21), and thus:

σy = σint

(
1 + ln

r21 + 2ρ1r1 − x2

2ρ1r1
−

y2
(
r21 + 2ρ1r1 + x2

)
(r21 + 2ρ1r1 − x2)2

)
(22)

The above-mentioned solution describes the components of stresses in Cartesian
coordinates. However, taking into consideration changes in curvatures of main
strains, it is easier to describe the components of stresses in the part subject to
necking in curvilinear coordinates.

3.2. Analysis of stresses in bi-polar coordinates

On the basis of physical and geometrical relations for plane stress for flat specimens,
strains and stresses can be calculated on the basis of the Lamé equations, then the
following equations hold in necking:

∂σβ

∂sα
+

σβ − σα

R1
= 0

∂σα

∂sβ
+

σβ − σα

ρ1
= 0 (23)

Assuming that σint = σβ − σα, we obtain:

σα = σint ln
coshαo + cosβ

coshα+ cosβ

σβ = σint

[
1 + ln

(coshαo + 1) (coshα+ cosβ)

(coshα+ 1)
2

]
(24)

σz = 0 εz = −
(
σint

σo

)n−1
εo
2σo

(σα + σβ)
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The specimen thickness h(α, β) can be calculated in approximation according to:

h(α, β) = h0(1 + εz) = h0

[
1−

(
σint

σo

)n−1
εo
2σo

(σα + σβ)

]
(25)

Under the assumption of plane stress on the specimen surface, the intensities of
stresses and strains are equal to, respectively:

σint =
√
σ2
α − σασβ + σ2

β , εint = ε0

(
σint

σ0

)n

(26)

where σint is the stress intensity according to the Huber – Mises hypothesis. On the
basis of the boundary conditions along the line that connects the upper and lower
part: for β = π/2 and ξ = −π/2 σβ = σξ and σα = ση for η = 0.492 ση = 0, for
y = L σy = σo, and then we obtain the stress components.

In the ”gripped” part, the Lamé equations have the form:

∂σξ

∂sη
+

σξ − ση

ρ2
= 0

∂ση

∂sξ
+

σξ − ση

R2
= 0

σηi = −σ0i ln
cosh ξi + cos η0
cosh ξi + cos ηi

(27)

σξi = σoi

[
1− ln

(1 + cos η0) (cosh ξi + cos ηi)

(1 + cos ηi)
2

]

where σ0i is the stress acting along the line connecting the upper and lower part,
calculated on the basis of the conditions of continuity along the line βo = ξo = const.

σ0i = σint

[
1 + ln

(coshα0 + 1) (coshαi + cosβ0)

(coshαi + 1)
2

]
[
1− ln

(1 + cos η0) · (cosh ξi + cos η0)

(1 + cos ηi)
2

]−1

A mean value of the stress intensity σint can be calculated if the dimensions of the
specimen in its cross–section subject to necking are known. Having divided the
force causing necking by the cross–section corresponding to it for β = 0, we obtain
the integral equation, on the basis of which we calculate σint:

σint =
F

2
α0∫
0

h(α, β) cosφdsβ

(28)

where F is calculated from formula (13), and h(α, β) – from formula (25). An
example of calculations of the stress (σint) is shown in Fig. 10.
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Figure 10 Tension diagrams σ(ε) obtained according to formula (28), after taking into account
strain hardening and necking
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Figure 11 Distributions of the normal stresses σβ according to formula (24) in the necking zone

3.3. Results of analytical calculations of stresses and strains in the
phase prior to rupture

The analysis of strains and stresses made by means of analytical and numerical
methods was based on tensile tests in the phase of failure. The results of analytical
numerical calculations obtained with the ”MATHCAD 2001” software package and
the FEM code (ANSYS 12 and 14) are presented below. The distributions of stresses
σβ and σα calculated on the basis of equations (24) and the intensities of stresses and
strains in the necking region (as a function of the coordinates α and β) according
to (16) are depicted in Figs. 13÷18.
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Figure 12 Distribution of the reduced stresses σint (stress intensity) according to the Huber
hypothesis, according to formula (26)

The curves showing a variability of the stresses σβ and σα and changes in the stress
and strain intensities σint and εint, respectively, in the necking zone are plotted
along the strain lines in bi–polar coordinates (Fig. 8) for various values of α along
the curves β = const (β = 0, π/24, π/18, π/16, π/12, ... π/4) and in the form
of surface functions F (a1, α, β) (for two variables α and β). The changes in the
specimen thickness calculated according to (25) were compared to the test results
obtained with the moiré–fringe technique.

The distributions of strains prior to an occurrence of the central fissure (in the
middle of the specimen) and strains on the specimen surface obtained with the
moiré–fringe technique were compared to the calculation results. The differences in
the measured and calculated changes in the specimen thickness ∆h were equal to
2÷6 %.
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Figure 13 Distributions of the normal stresses σα according to formula (24) in the necking zone
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Figure 14 Distributions of the normal stresses σβ and the reduced stresses -σint (stress intensity)
according to the Huber hypothesis in the necking zone
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Figure 15 Changes in the specimen thickness ∆h from the axis of symmetry. Distributions of
the normal stresses σα in the necking zone

3.4. Zones of sliding lines (surfaces)

Under further loading, plastic strain zones and sliding lines (surfaces) start to occur
and they can be described as a function of two variables x(α, β), y(α, β) on the
basis of well–known relationships:

dy

dx
= ±2 (τxy − k)

σy − σx
or:

dy

dx
= ± σy − σx

2 (τxy − k)
where: k =

σint√
3

(29)
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The zones of plastic strains and sliding lines (surfaces) can be described on the basis
of the main strain lines x(α, β), y(α, β), whereas the stress components have been
calculated according to formulas (24) and (26)

1. Assuming that:

σint = σβ − σα τxy =
σβ − σα

2
sin 2φ and σy − σx = (σβ − σα) cos 2φ

we obtain:

dy

dx
= ±σint sin 2φ− 2k

σint cos 2φ
⇒ dy

dx
= ±

(
tg2φ− 2k

σint cos 2φ

)
(30)

After the integration:

y = ±x

(
tg2φ− 2k

σint cos 2φ

)
+ C2 (31)

where:

sin 2φ =
2shαi sinβi [(1 + chαi) cosβi]

(chαi + cosβi)2
cos 2φ =

2− (chαi − cosβi)
2

(chαi + cosβi)2

2. Assuming that plain stress occurs on the specimen surface, the intensity of
stresses and strains have been calculated according to formula (26), and the sliding
surface shape according to the following formula:

dy

dx
= ± σint cos 2φ

σint sin 2φ− 2k
y = ±x

(
σint cos 2φ

σint sin 2φ− 2k

)
+ C2 (32)

s
hmx

SX

Figure 16 Zones of the plastic strains and the sliding lines (surfaces) at the point of necking prior
to fracture, calculated according to (26)
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Figure 17 Distributions of the reduced stresses according to the Huber hypothesis along the
sliding line at the point of necking prior to fracture, calculated according to (30)
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Figure 18 Specimen surface in strain and the sliding lines, calculated according to (32). Due to
the two–axis symmetry, 1/4 of the specimen has been presented at the point of necking

3.5. Results of numerical calculations of the specimen under test

The results of experimental investigations and calculations have been compared to
the results of numerical calculations (with the finite element method, using the AN-
SYS 6.1 software package). In the model for numerical calculations, the dimensions
such as in the initial phase of necking have been assumed. (Fig. 3). The mate-
rial properties σ(ε) assumed in the computations in the form of a polygonal curve
correspond to actual stresses and strains at the point of necking (Fig. 19).
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Figure 19 Material properties σ(ε): a) obtained from the tests, b) assumed in the FEM compu-
tations
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Figure 20 Results obtained on the basis of the FEM numerical calculations (ANSYS 12). The
drawings show: a mesh of elements, distributions of the reduced stresses according to the Huber
hypothesis and distributions of the maximum shear stresses τmax, distributions of the normal
stresses σy and σx

4. Conclusions following from the tensile test

The conducted tests and numerical calculations of the tensile test are aimed at the
verification of the mathematical model that can be applied in further computations.
The presented formulae enable a description of stresses in the whole range of loading,
taking into account necking and a determination of the intensity of stresses, a
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description of the generation of the sliding lines, or strictly speaking, the sliding
surfaces.

The way the strains have been described in bi–polar coordinates, which has
been based on experimental investigations, allows for employing the results into
numerical calculations, where we are interested in stress states in failure. The
description of the stress–strain relationship, which takes into consideration a strain
hardening and necking under rupture and the determination of the magnitude of
breaking stresses, makes it possible to develop a numerical model until the element
failure occurs. The distributions of strains calculated according to the presented
formulae are convergent with the results of strain tests in the neighbourhood of
necking.

The simplified analysis of the stress state in bi–polar coordinates can be used
to build a numerical model if we assume a division of the specimen into two basic
elements: a part that is subjected to uniform tension and a part that has been
subjected to uniform tension and then necking.

The scheme of failure can be described as follows: the value of the maximum
force obtained during the tensile test and the strain corresponding to it enables a
determination of the parameter or the function of strain hardening. In order to
obtain the maximum force, we can assume uniform tension, then the necked part is
subject to strain as a matter of fact.

While analysing the test results, the following should be defined:

1. strains corresponding to the limit of proportionality and to the yield point,

2. strains corresponding to the maximum tensile force,

3. strains corresponding to necking at the instant of rupture and the dimensions
of the cross–section.

Next, an influence of necking, at which an increase in stresses and a rupture of
the material cohesion forces take place and a fracture (a vertical central fissure
propagating symmetrically along the sliding lines) occurs, and then the material
breaks along the sliding line, should be considered.

The sliding lines determined experimentally and analytically in the failure phase
go at the angle of 60˚ with respect to the vertical axis, and not at the angle of 45˚
as has been assumed in numerous theoretical solutions.

A good agreement between the FEM numerical results (ANSYS 12 and 14) and
those obtained from the tests has been found. Because of too little a number of
tests, one cannot draw too explicit conclusions, nevertheless the presented actual
σ− ε (stress–strain) relationship in the whole range of loading makes it possible to
employ the mathematical model that can be applied in further material strength
calculations.
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