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The governing equations of transversely isotropic dual–phase–lag two-temperature ther-
moelasticity are solved for the surface wave solutions. The particular solutions in the
half-space satisfy the‘ boundary conditions at a thermally insulated /isothermal stress–
free surface of a half–space to obtain the frequency equation of the Rayleigh wave for the
cases of coupled thermoelasticity, Lord and Shulman thermoelasticity and dual-phase-lag
thermoelasticity. Some particular and special cases are obtained. The numerical values
of the non-dimensional speed of the Rayleigh wave are computed and shown graphically
against frequency, non-dimensional elastic constant and two–temperature parameter.
The effects of frequency, two–temperature and dual–phase–lag are observed on the non-
dimensional speed of Rayleigh wave.
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1. Introduction

Biot [1] developed the classical dynamical coupled thermoelasticity, which consists
of hyperbolic-parabolic field equations in a space–time domain. Lord and Shulman
[2] and Green and Lindsay [3] extended the classical dynamical coupled theory of
thermoelasticity to generalized thermoelasticity theories, which consist of hyperbolic
field equations describing heat as a wave. In contrast to Biot’s coupled thermoe-
lasticity, the generalized theories of thermoelasticity predict a finite speed of heat
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propagation. Ignaczak and Ostoja–Starzewski [4] analyzed the above two theories
in their book on ”Thermoelasticity with Finite Wave Speeds”. The representative
theories in the range of generalized thermoelasticity are reviewed by Hetnarski and
Ignaczak [5]. Tzou [6-8] developed the dual–phase–lag (DPL) thermoelastic model,
which considers the interactions between phonons and electrons on the microscopic
level as retarding sources causing a delayed response on the macroscopic scale. The
dual–phase–lag (DPL) model is a modification of the classical thermoelastic model,
where the Fourier law is replaced by an approximation to a modified Fourier law
with two different time translations: a phase-lag of the heat flux τq and a phase–lag
of temperature gradient τθ.

Gurtin and Williams [9, 10] proposed the second law of thermodynamics for
continuous bodies in which the entropy due to heat conduction was governed by
one temperature, that of the heat supply by another temperature. Based on this
law, Chen and Gurtin [11] and Chen et al. [12, 13] formulated a theory of thermoe-
lasticity which depends on two distinct temperatures, the conductive temperature
Φ and the thermodynamic temperature T . The two–temperature theory involves a
material parameter a∗ > 0. The limit a∗ → 0 implies that Φ → T and the clas-
sical theory can be recovered from two-temperature theory. According to Warren
and Chen [14], these two temperatures can be equal in time-dependent problems
under certain conditions, whereas Φ and T are generally different in particular prob-
lems involving wave propagation. Following Boley and Tolins [15], they studied the
wave propagation in the two–temperature theory of coupled thermoelasticity. They
showed that the two temperatures T and Φ, and the strain are represented in the
form of a traveling wave plus a response, which occurs instantaneously throughout
the body. Puri and Jordan [16] studied the propagation of harmonic plane waves
in two temperature theory. Youssef [17] developed a theory of two–temperature
generalized thermoelasticity. Kumar and Mukhopadhyay [18] extended the work of
Puri and Jordan [16] in the context of the linear theory of two–temperature gener-
alized thermoelasticity developed by Youssef [17]. Youssef [19] formulated a theory
of two-temperature thermoelasticity without energy dissipation.

The possibility of a wave traveling along the free surface of an elastic half-space
such that the disturbance is largely confined to the neighborhood of the bound-
ary was considered by Rayleigh. Lockett [20] discussed the effect produced by
the thermal properties of an elastic solid on the form and velocity of Rayleigh
waves. Chandrasekharaiah and Srikantaiah [21] studied the temperature rate de-
pendent thermoelastic Rayleigh waves in half-space. Wojnar [22] discussed Rayleigh
waves in thermoelasticity with relaxation times. Dawn and Chakraborty [23] stud-
ied Rayleigh waves in Green–Lindsay Model of Generalized thermoelastic media.
Abouelregal [24] studied Rayleigh waves in an isotropic thermoelastic solid half
space using dual–phase–lag model. Singh [25] and Singh and Bala [26] studied the
propagation of Rayleigh wave in a two-temperature generalized thermoelastic solid
half–space.

Surface wave propagation in elastic solid with thermal effects is of interest in
many geophysical, seismological and astrophysical problems. DPL model is used
in investigating the micro-structural effect on the behavior of heat transfer. The
two–temperature model has been widely used to predict the electron and phonon
temperature distributions in ultrashort laser processing of metals. In this paper, we
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formulated the governing equations of transversely isotropic dual–phase–lag two–
temperature thermoelasticity. These equations are solved for general surface wave
solutions. A half–space with thermally insulated or isothermal stress–free surface
is considered. Keeping in view of rradiation conditions, the particular solutions in
the half-space are obtained which satisfy the required boundary conditions at ther-
mally insulated/isothermal stress free surface. Frequency equations of the Rayleigh
wave at thermally insulated/isothermal surface of the half-space are derived for the
cases of coupled thermoelasticity, Lord and Shulman thermoelasticity and dual–
phase–lag thermoelasticity. The numerical values of the non–dimensional speed of
the Rayleigh wave are computed and shown graphically against frequency, non–
dimensional elastic constant and two–temperature parameter.

2. Basic equations

Following Tzou [6–8] and Youssef [17], the basic equations of motion for transversely
isotropic dual–phase–lag thermoelastic model in the absence of body forces and heat
sources are:

• The equation of motion:
ρüi = σji,j + ρFi, (1)

• The strain-stress-temperature relation:

σij = cijklekl + aijΘ, (2)

• The displacement-strain relation:

eij =
1

2
(ui,j + uj,i), (3)

• The energy equation:
−qi,j = ρT0Ṡ, (4)

• The modified Fourier’s law:

−Kij(Φ,j + τθΦ̇,j) = qi + τq q̇i, (5)

• The entropy-strain-temperature relation:

ρS =
ρcE
T0

Θ− aijeij , (6)

• The relation between two temperatures:

Φ−Θ = a∗Φ,ii, (7)

where Θ = T −T0 is small temperature increment, T is the absolute temperature of
the medium, T0 is the reference uniform temperature of the body chosen such that
|Θ/T0| ≪ 1, Φ is conductive temperature, a∗ is the two–temperature parameter,
ρ is the mass density, qi are components of the heat conduction vector, Kij are
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the components of the thermal conductivity tensor, cE is the specific heat at the
constant strain, cijkl is the tensor of the elastic constants, σij are the components
of the stress tensor, ui are the components of the displacement vector, eij are the
components of the strain tensor, S is the entropy per unit mass, aij are constitutive
coefficients. τq is the phase–lag heat flux and τθ is the phase–lag of the gradient
of the temperature where 0 ≤ τθ ≤ τq. The DPL thermoelastic theory reduces
to the coupled thermoelasticity (CT theory) for τθ = 0, τq = 0 and it reduces to
Lord–Shulman (LS) theory of generalized thermoelasticity when we replace τθ = 0
and τq by τθ.

3. Formulation of the problem and solution

We consider a homogeneous and transversely isotropic two temperature dual–phase–
lag thermoelastic solid half-space of an infinite extent with Cartesian coordinates
system (x, y, z), which is previously at uniform temperature. The present study is
restricted to the plane strain parallel to x− z plane, with the displacement vector
u = (u1, 0, u3). With the help of the equations (1) to (7), we obtain the following
equations in x-z plane:

c11u1,11 + (c13 + c44)u3,13 + c44u1,33 − β1Θ,1 = ρü1 (8)

c44u3,11 + (c13 + c44)u1,13 + c33u3,33 − β3Θ,3 = ρü3 (9)

(1 + τθ
∂

∂t
)[K1Φ11 +K3Φ33] = (1 + τq

∂

∂t
)[ρcEΘ̇ + β1T0u̇1,11 + β3T0u̇3,3] (10)

Φ−Θ = a∗(Φ,11 − Φ,33) (11)

For thermoelastic surface waves in the half–space propagating in x-direction, the
displacement and potential functions (u1, u3,Φ) are taken in the following form:

{u1, u3, Φ} = {ϕ1(z), ϕ3(z), ψ(z)} exp ιk(x− ct) (12)

Using equation (11) into equations (8) to (10) and then using equation (12), we
obtain the following homogenous system of three equations in ϕ1, ϕ3 and ψ:

[k2(ζ − a1) +D2]ϕ1 + ιk(a2 + 1)Dϕ3 − ιk(1 + s∗ − a∗D2)ψ = 0 (13)

ιk(a2 + 1)Dϕ1 + [k2(ζ − 1) + a3D
2]ϕ3 − β̄D(1 + s∗ − a∗D2)ψ = 0 (14)

ιk3ϵζϕ1 + β̄ζϵk2Dϕ3 + [k2{ζ(1 + s∗ − a∗D2)−K1
∗}+K3

∗D2]ψ = 0 (15)

where:

ϵ =
β1

2T0
ρ2cEc12

ζ =
ρc2

c44
s∗ = a∗k2 a1 =

c11
c44

a2 =
c13
c44

(16)

a3 =
c33
c44

τ∗ =
τq +

ι
ω

1− ιωτθ
K1

∗ =
K1

cEc44τ∗
K3

∗ =
K3

cEc44τ∗
β̄ =

β3
β1

The equations (13) to (15) result into following auxiliary equation:

(D6 −AD4 +BD2 − C)(ϕ1, ϕ3, ψ) = 0 (17)
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where:

A =
−k2

(a3K3
∗ − s∗ζa3 − ϵs∗ζβ̄2)

[(ζ − 1)(K3
∗ − s∗ζ) + (ζ − a1)(a3K3

∗ − s∗ζa3)

+ a3(ζ −K1
∗) + (a2 + 1)2K3

∗ + ζ(s∗a3 + (a2 + 1)2) + ϵζ(β̄2 + s∗β̄2

+ β̄(ζ − a1) + β̄(2 + a2)− a3)]

B =
k4

(a3K3
∗ − s∗ζa3 − ϵs∗ζβ̄2)

[(ζ − a1)(ζ − 1)(K3
∗ − ζ) + a3(ζ − a1)(ζ −K1

∗)

+ (ζ − 1)(ζ −K1
∗) + (a2 + 1)2(ζ −K1

∗) + ϵ(β̄(ζ − a1) + β̄ζ + ζ̄(a2 + 1)

+ ζa3s
∗ + s∗ζ(ζ − 1))]

C =
−k6

(a3K3
∗ − s∗ζa3 − ϵs∗ζβ̄2)

[(ζ − a1)(ζ − 1)(ζ −K1
∗)− ϵζ(ζ − 1)]

The general solutions of equation (17) are:

u1(z) =

[
3∑

i=1

Ai exp(−miz) +
3∑

i=1

Ai

′
exp(miz)

]
exp ik(x− ct) (18)

u3(z) =

[
3∑

i=1

Bi exp(−miz) +
3∑

i=1

Bi

′
exp(miz)

]
exp ik(x− ct) (19)

Φ(z) =

[
3∑

i=1

Ci exp(−miz) +
3∑

i=1

Ci

′
exp(miz)

]
exp ik(x− ct) (20)

where Ai, Bi, Ci, Ai

′
, Bi

′
, Ci

′
are arbitrary constants and mi are the roots of the

equation:
m6 −Am4 +Bm2 − C = 0 (21)

The equation (21) is cubic in m2 and its roots m1
2, m2

2, m3
2 are related as:

m1
2 +m2

2 +m3
2 = A (22)

m1
2m2

2 +m2
2m3

2 +m3
2m1

2 = B (23)

m1
2m2

2m3
2 = C (24)

In general, the roots mi, (i = 1, 2, 3) are complex and here we are considering
surface waves, without loss of generality, we can assume Re(mi) > 0. We choose
only that form of mi which satisfies the radiation condition:

u1(z), u3(z),Φ(z) → 0 as z → ∞ (25)

With the help of condition (25), the solutions (18) to (20) reduce to particular
solutions in half–space z ≥ 0 as:

u1(z) =

3∑
i=1

Ai exp(−miz) exp ik(x− ct) (26)
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u3(z) =
3∑

i=1

FiAi exp(−miz) exp ik(x− ct) (27)

Φ(z) =

3∑
i=1

Fi
∗Ai exp(−miz) exp ik(x− ct) (28)

where Bi = FiAi, Ci = Fi
∗Ai and:

Fi = [
mi

k [β̄(ρc2 − c11 +
mi

2

k2 c44) + (c13 + c44)]

ι[β̄mi
2

k2 (c13 + c44)− ((ρc2 − c44) +
mi

2

k2 c33)]
] (i = 1, 2, 3)

Fi
∗

k
= −

ιϵc44[β̄((ρc
2 − c11) + c44

mi
2

k2 ) + (c13 + c44)]

β1[(1 + s∗ − a∗D2)[ϵβ̄ + (c13 + c44)] + (c13 + c44)(−K1
∗

ζ + K1
∗

ζ
mi

2

k2 )]
]

(i = 1, 2, 3)

4. Derivation of frequency equation

The mechanical and thermal conditions at the free surface z = 0 are:

• Vanishing of the normal stress component:

σzz = o, (29)

• Vanishing of the tangential stress component:

σzx = 0, (30)

• Vanishing of the normal heat flux or temperature component:

∂Θ

∂z
+ hΘ = 0, (31)

where h → 0 corresponds to the thermally insulated surface, h → ∞ corresponds
to the isothermal surface, and:

σ33 = c33u3,3 + c13u1,1 − β3[Φ− a∗(Φ11 +Φ33)]

σ31 = c44(u1,3 + u3,1)

Θ = Φ− a∗Φ,ii

Making use of solutions (26) to (28) in boundary conditions (29) to (31), we obtain
the following homogeneous system of three equations in A1, A2 and A3:

3∑
i=1

[c33miFi − ιkc13 + β3(1 + a∗k2 − a∗mi
2)Fi

∗]Ai = 0 (32)

3∑
i=1

(mi − ιkFi)Ai = 0 (33)
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3∑
i=1

[(1 + a∗k2 − a∗mi
2)mi − h]Fi

∗Ai = 0 (34)

For non–trivial solution of equations (32) to (34), the determinant of the coefficients
must vanish, i.e.:

3∑
i=1

[(1 + a∗k2 +mi
2)mi − h]Xi = 0 (35)

where:

X1 = F1
∗[{c33m2F2 − ιkc13 + β3(1 + a∗k2 +m3

2)F2
∗}(m3 − ιkF3)

−{c33m3F3 − ιkc13 + β3(1 + a∗k2 +m2
2)F3

∗}(m2 − ιkF2)],

X2 = F2
∗[{c33m3F3 − ιkc13 + β3(1 + a∗k2 +m1

2)F3
∗}(m1 − ιkF1)

−{c33m1F1 − ιkc13 + β3(1 + a∗k2 +m3
2)F1

∗}(m3 − ιkF3)],

X3 = F3
∗[{c33m1F1 − ιkc13 + β3(1 + a∗k2 +m2

2)F1
∗}(m2 − ιkF2)

−{c33m2F2 − ιkc13 + β3(1 + a∗k2 +m3
2)F2

∗}(m1 − ιkF1)].

The equation (35) is the frequency equation of Rayleigh wave in two–temperature
dual–phase–lag transversely isotropic thermoelastic model.

5. Particular cases

Case (I): Thermally insulated case (h→ 0)
The frequency equation (35) reduces to:

3∑
i=1

[(1− a∗(−k2 +mi
2))mi]Xi = 0. (36)

Case (II): Isothermal case (h→ ∞)
The frequency equation (35) reduces to:

X1 +X2 +X3 = 0. (37)

Case (III): Dual–phase–lag transversely isotropic thermoelastic case
In absence of two temperature i.e a∗ = 0, the frequency equations (36) and (37)
reduce to:

m1X1
∗ +m2X2

∗ +m3X3
∗ = 0 (38)

X1
∗ +X2

∗ +X3
∗ = 0 (39)

where:

X1
∗ = F1

∗(c33m2F2−ιkc13+β3F2
∗)(m3−ιkF3)−(c33m3F3−ιkc13+β3F3

∗)(m2−ιkF2)

X2
∗ = F2

∗(c33m3F3−ιkc13+β3F3
∗)(m1−ιkF1)−(c33m1F1−ιkc13+β3F1

∗)(m3−ιkF3)

X3
∗ = F3

∗(c33m2F2−ιkc13+β3F2
∗)(m3−ιkF3)−(c33m3F3−ιkc13+β3F3

∗)(m2−ιkF2)
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6. Special case

In the absence of thermal effect, i.e., when β3 = 0, β1 = 0, K1 = K3 = 0, then the
frequency equation (35) reduces to:

(m1 − h)X1
∗∗ + (m2 − h)X2

∗∗ + (m3 − h)X3
∗∗ = 0 (40)

where:

X1
∗∗ = F1

∗(c33m2F2 − ιkc13)(m3 − ιkF3)− (c33m3F3 − ιkc13)(m2 − ιkF2)

X2
∗∗ = F2

∗(c33m3F3 − ιkc13)(m1 − ιkF1)− (c33m1F1 − ιkc13)(m3 − ιkF3)

X3
∗∗ = F3

∗(c33m2F2 − ιkc13)(m3 − ιkF3)− (c33m3F3 − ιkc13)(m2 − ιkF2)

Further, if we put c11 = λ+ 2µ, c13 = λ, c44 = µ in equation (40), the equation
(40) reduces to:

(2− c2

c22
)
2

= 4(1− c2

c12
)1/2(1− c2

c22
)1/2, (41)

which is frequency equation of Rayleigh wave at free surface of an elastic solid
half–space.

7. Numerical example

For most of materials, ϵ is small at normal temperature. For ϵ ≪ 1 and using the
equations (22) to (24), we obtain the following approximated relations:

m1
2+m2

2+m3
2 =

−k2

(a3K3
∗ − s∗ζa3)

[(ζ− 1)(K3
∗− s∗ζ)+ (ζ − a1)(a3K3

∗ − s∗ζa3)

+a3(ζ −K1
∗) + (a2 + 1)2K3

∗ + ζ(s∗a3 + (a2 + 1)2)]

m1
2m2

2 +m2
2m3

2 +m3
2m1

2 =
k4

(a3K3
∗ − s∗ζa3)

[(ζ − a1)(ζ − 1)(K3
∗ − ζ)

+a3(ζ − a1)(ζ −K1
∗) + (ζ − 1)(ζ −K1

∗) + (a2 + 1)2(ζ −K1
∗)]

m1
2m2

2m3
2 =

−k6

(a3K3
∗ − s∗ζa3)

[(ζ − a1)(ζ − 1)(ζ −K1
∗)]

and the approximated roots as:

(m1)
2

k2
≡ −(ζ − a1) =

c11 − ρc2

c44
(42)

(m2)
2

k2
≡ − (ζ − 1)

a3
=
c44 − ρc2

c33
(43)

(m3)
2

k2
≡ − (ζ −K1

∗)

K3
∗ =

K1 − ρc2cEτ
∗

K3 − a∗k2cEτ∗
(44)

For numerical computation of the non–dimensional speed of propagation of Rayleigh
wave, we restricted to the case of thermally insulated surface only. Therefore,
the frequency equation (36) for thermally insulated case is approximated with the
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help of equations (42) to (44) and is solved numerically to obtain the speeds of
propagation of Rayleigh wave for certain ranges of frequency and non-dimensional
constants.

Following physical constants of single crystal of zinc are considered (Chadwick
and Seet [27]):

c11 = 1.628× 1011Nm−2, c33 = 1.562× 1011Nm−2,

c13 = 0.508× 1011Nm−2, c44 = 0.385× 1011Nm−2

β1 = 5.75× 106Nm−2deg−1, β3 = 5.17× 106Nm−2deg−1,

K1 = 1.24× 102Wm−1deg−1, K3 = 1.34× 102Wm−1deg−1,

Ce = 3.9× 102 JKg−1deg−1, ρ = 7.14× 103Kgm−3,

T0 = 296K, τq = 0.005 s, τθ = 0.0005 s.

For the above physical constants, the non-dimensional speed of propagation ρc2

c44
is

computed and plotted for the range 5 Hz ≤ ω ≤ 30 Hz of frequency, when a∗ = 0.5.
For the range 5 Hz ≤ ω ≤ 10 Hz, the speed decreases very slowly and thereafter,
it increases sharply for the remaining range. The comparison of solid curve (DPL
theory) and dashed curves (CT theory and LS theory) in Fig. 1, shows the effect
dual phase lag on the speed at various values of frequency.

The non–dimensional speed of propagation ρc2

c44
is computed for the range 1 ≤

c11
c44

≤ 2 of non-dimensional elastic constant, when a∗ = 0.5. The speed decreases
sharply with the increase in value of non-dimensional constant c11

c44
. The comparison

of solid and dashed curves in Fig. 2, shows the effect of dual phase lag on speed at
various values of non–dimensional elastic constant.
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The non–dimensional speed of propagation ρc2

c44
is also computed for the range 0 ≤

a∗ ≤ 1 of two–temperature parameter, when ω = 5‘Hz. For the range 0 ≤ a∗ ≤ 1,
the non-dimensional speed of propagation increases and thereafter it oscillates. The
comparison of solid and dashed curves in Fig. 3, shows the effect of dual phase lag
on speed at various values of two–temperature parameter.
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8. Conclusion

The general surface wave solutions of the governing equations of transversely isotropic
dual phase lag two–temperature thermoelasticity are obtained. With the help of
suitable radiation conditions, the general solutions are reduced to particular so-
lutions in the half–space. The particular solutions satisfy the required boundary
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conditions at stress free thermally insulated or isothermal surface and we obtain the
frequency equation of Rayleigh wave. Some particular cases of the frequency equa-
tion are derived. In absence of thermal and anisotropy parameters, the frequency
equation reduces to the classical isotropic elastic case. For numerical purpose, the
frequency equation is approximated for the case of small thermal coupling and then
solved numerically for a particular model of the material. The non–dimensional
speed of propagation is plotted against the frequency, non–dimensional elastic and
two–temperature parameters. The numerical results indicate the effects of dual–
phase–lag, frequency and two–temperature on the non–dimensional speed of prop-
agation.
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