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A study of an incompressible two–dimensional flow in a channel with one porous wall
is presented in this research. As usual, the cylindrical propellant grain of a solid rocket
motor is modeled as a long tube with one end closed at the headwall, while the other
remains open. The governing continuity and momentum equations together with the
associated boundary conditions are first reduced to a set of self similar non–linear coupled
ordinary differential equations using similarity transformations. Then we solved the
ordinary differential equation by RVIM and the numerical method.
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1. Introduction

The flow of Newtonian and non-Newtonian fluids in a porous surface channel has
attracted the interest of many investigators in view of its applications in engineering
practice. One of these applications is to treat the internal motion of the gases in solid
rocket motors as the superposition of a steady average flow and a conglomeration
of unsteady fields [1].
The average flow, also commonly known as the mean flow, represents the bulk
motion of the
gases in the rocket and can be approximated by the steady flow in a porous pipe.
Most scientific problems such as two-dimensional viscous flow between slowly ex-
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panding or contracting walls with weak permeability and other fluid mechanic prob-
lems are inherently nonlinear. Except a limited number of these problems, most of
them do not have analytical solution. Therefore, these nonlinear equations should
be solved using other methods.

J. Stebel, [2] conducted a study on shape stability of incompressible fluids subject to
Navier slip, focusing on the equations of motions for incompressible fluids that slip
at the wall. It was noted that the issue of boundary conditions in fluid mechanics
has been studied for over two centuries by many distinguished scientists but still it
is subject to discussion in the mathematical community.

Makinde and Osalusi [3] investigated the steady flow in a channel with slip at
the permeable boundaries. They reported that an increase in the positive value
of flow Reynolds number(Re)represents an increase in the fluid suction while an
increase in the negative value of Re represents an increase in the fluid injection.
They also noticed that wall skin friction increases with suction and decreases with
injection and that, both slip parameter and magnetic field have great influence on
wall skin friction. A similar study was done by Makinde [4] on extending the utility
of perturbation series in problems of laminar flow in a porous pipe and diverging
channel, by considering a steady ax symmetric flow of a viscous incompressible fluid
driven.

along a pipe by the combined effect of the wall deceleration and suction. It was
stated that a bifurcation occurs where the solutions of a non-linear system change
their qualitative character as a parameter changes. In particular, bifurcation theory
is about how the number of steady solutions of a system depends on a parameter.
Yogeshi and Denn [5] conducted a study on planar contraction flow with a slip
boundary condition in which they analyzed the creeping flow of Newtonian and
inelastic non Newtonian fluids in a planar contraction with Navier (linear) slip
boundary condition. It was found that, curved streamlines arises in the presence
of wall slip, which may be a factor in the initiation of instabilities associated with
entry flow.

The flow of an incompressible viscous fluid between a uniformly porous upper plate
and a lower impermeable plate that is subjected to a Navier slip is modeled and
analyzed in this study using analytical approaches [6-12].

Figure 1 Schematic of problem
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2. Mathematical formulation

Consider the laminar, isothermal and incompressible flow in a cylindrical domain
bounded by permeable surfaces with one end closed at the head well while the
other remains open. A schematic diagram of the problem is shown in Fig. 1. The
walls expand radially at a time-dependent rate a∗. Furthermore, the origin x∗ = 0
is assumed to be the center of the classic squeeze film problem. This enables us
to assume flow symmetry about x∗ = 0. Under these assumptions, the transport
equation for the unsteady flow is given as follows:

∂Ω∗

∂t
−∇∗ × u∗ × Ω∗ = v∇∗ ×∇∗2u∗ (1)
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where p∗, ρ, v and tare the dimensional pressure, density, kinematic viscosity and
time, respectively. Auxiliary conditions can be specified such as:

y∗ = a (t) : u∗ = 0 v∗ = −Vw = −a∗

c

y∗ = 0 :
∂u∗

∂y∗
= 0 v∗ = 0 (4)

x∗ = 0 : u∗ = 0

Using some modification and special variable [13], and the we have:

F IV + α (yF ′′′ + 3F ′′) +ReF ′F ′′′ −ReF ′F ′′ = 0 (5)

With the following boundary conditions:

y = 0 : f = 0, f ′ = 0

(6)

y = 1 : f = 1, f ′ = 0

The resulting Eq. 5 is the classic Berman’s formula [14], with α = 0 (channel
with stationary walls). After the flow field is found, the normal pressure gradient
can be obtained by substituting the velocity components into Eqs. 1–3. Hence it
is:

py = −
[
Re−1f ′′ + ff ′ + αRe−1 (f + yf ′)

]
p =

p∗

ρV 2
w

(7)

Introducing the non-dimensional shear stress τ = τ∗

ρV 2
w
, we have:

τ =
xf ′′

Re
(8)
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3. Solution procedure

In the following section, an alternative method for finding the optimal value of
the Lagrange multiplier by the use of the Laplace transform will be investigated.
suppose x, t are two independent variables, consider t as the principal variable and
x as the secondary variable. if u (x, t) is function of two variables x and t, when the
Laplace transform is applied with t as a variable, definition of Laplace transform is:

L (u (x, t) ; s) =

∫ ∞

0

e−stu (x, t) dt (9)

We have some preliminary notations as:

L

(
∂u

∂t
; s

)
=

∫ ∞

0

e−st ∂u

∂t
dt = sU (x, s)− u (x, 0) (10)

L

(
∂2u

∂t2
; s

)
= s2U (x, s)− sU (x, s)− ut (x, 0) (11)

U (x, s) = L (u (x, t) ; s) (12)

We often come across functions which are not the transform of some known
function but then they can possibly be as a product of two function. Thus we may
be able to write the given function as U (x, s), V (x, s) where U (s)and V (s) are
known to the transform of the function u (x, t), v (x, t), when the Laplace transform
is applied to t as a variable, respectively; then U (x, s), V (x, s) is the Laplace

Transform of
∫ t

0
u (x, t− ε) v (x, ε) dε:

L−1 (U (x, s) , V (x, s))=

∫ t

0

u (x, t− ε) v (x, ε) dε (13)

To facilitate our discussion of Reconstruction of Variational Iteration Method
(RVIM), introducing the new linear or nonlinear function:

h (u (x, t)) = f (x, t)−N (u (x, t))

and considering the new equation, rewrite:

h (u (x, t)) = f (x, t)−N (u (x, t))

as:

L (u (t, x)) = h (t, x, u) (14)

Now, for implementation the correctional function of VIM based on new idea of
Laplace transform, applying Laplace Transform to both sides of the above equation
so that we introduce artificial initial conditions to zero for main problem, then left
hand side of equation after transformation is featured as:

L [L {u (x, t)} ] = U (x, s)P (s) (15)

where P (s) is polynomial with the degree of the highest order derivative of linear
operator :
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L [L {u (x, t)} ]= U (x, s)P (s) = L [h { (x, t, u)} ] (16)

U (x, s) =
L [h { (x, t, u)} ]

P (s)
(17)

Suppose that D (s) = 1/P (s), Using the convolution theorem, Taking the inverse
Laplace transform on both side of Eq. (17),

u (x, t) =

∫ t

0

d (t− ε)h (x, ε, u) dε (18)

u0 (x, t) +

∫ t

0

d (t− ε)h (x, ε, u) dε (19)

and u0 (x, t) is initial solution with or without unknown parameters. In absence of
unknown parameters, u0 (x, t) should satisfy initial boundary conditions.

4. Results and discussions

The objective of the present study was to apply RVIM to obtain an explicit analytic
solution of laminar, isothermal, incompressible viscous flow in a rectangular domain
bounded by two moving porous walls, which enable the fluid to enter or exit.
Fig. 2 shows the effects of changing the Reynolds number while maintaining the
values of Non-dimensional wall dilation rate. The result shows that as the Reynolds
number increases, the normal component of velocity decrease. In Fig. 2 a proper
comparison is also made between the numerical solution obtained by Runge Kutta
method and RVIM. A great agreement between analytical solutions and numerical
ones are illustrated.

In Fig. 3, the effects of non–dimensional wall dilation rate with constant Reynolds
number on radial velocity can be illustrated.
For every level of injection or suction, in the case of expanding wall, increasing α
leads to higher radial velocity near the center and the lower radial velocity near the
wall. The reason is that the flow toward the center becomes greater to make up for
the space caused by the expansion of the wall and as a result, the radial velocity
also becomes greater near the center.

In Fig. 4 the pressure drop for case Re = 10 can be illustrated. The effects of
dilation number is also seen through plot.

Fig. 4 shows that for every level of injection or suction, the absolute pressure
change in the normal direction is lowest near the central portion. Furthermore,
by increasing non-dimensional wall dilation rates the absolute value of pressure
distribution in the normal direction increases.
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Figure 2 Effect of Reynolds number on axial velocity

Figure 3 Effect of wall dilation rate number on radial velocity
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Figure 4 Pressure drop for various values of dilation number

Figure 5 Shear stress changes shown over a range of dilation rate
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Non–dimensional wall dilation rates, are plotted in Fig. 5. We can observe from
Fig. 5 that the absolute shear stress along the wall surface increases in proportion
to x. Furthermore, by increasing nondimensional wall dilation rates the absolute
value of shear stress increases.

5. Conclusions

In this paper, the mathematical modeling of the flow in a porous cylinder with
a focus on applications to solid rocket motors is presented. The cylindrical wall is
assumed to be permeable so as to simulate the propellant burning and normal gas
injection. At first, the problem description and formulation are considered. The
Navier–Stokes equations for the viscous flow in a porous cylinder with regressing
walls are reduced to a nonlinear ODE by using a similarity transformation in time
and space. Application of RVIM (Reconstruction of Variational Iteration Method)
as an approximate analytical method has been successfully applied. Finally the
results have been presented for various cases.
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