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The model of the equations of generalized magneto-thermoelasticity in an isotropic elastic
medium with two–temperature under the effect initial stress is established. The entire
elastic medium is rotated with a uniform angular velocity. The formulation is applied
under three theories of generalized thermoelasticity: Lord–Shulman, Green–Lindsay, as
well as the coupled theory. The Harmonic function is used to obtain the exact expressions
for the considered variables. Some particular cases are also discussed in the context of the
problem. We introduce the equations of the velocity of p–wave, T–wave and SV-wave.
The boundary conditions for mechanical and Maxwell’s stresses and thermal insulated
or isothermal are applied to determine the reflection coefficients for p–wave, T–wave and
SV–wave. Some new aspects are obtained of the reflection coefficients and displayed
graphically and the new conclusions are presented. Comparisons are also made with
the results predicted by different theories (CT, L–S, G–L) in the presence of rotation,
initial stress, magnetic field, as well as, the two-temperature parameter on the reflection
of generalized thermo–elastic waves.
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1. Introduction

The generalized theory of thermoelasticity is one of the modified versions of clas-
sical uncoupled and coupled theory of thermoelasticity and has been developed in
order to remove the paradox of physical impossible phenomena of infinite velocity of
thermal signals in the classical coupled thermoelasticity [1]. The first generalization
involving one thermal relaxation time is discussed by Lord and Shulman [2]. The
temperature rate-dependent thermoelasticity is developed where includes two ther-
mal relaxation times is discussed by Green and Lindsay [3]. One can review and
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presentation of generalized theories of thermoelasticity is discussed by Hetnarski
and Ignaczak [4]. The wave propagation in anisotropic solids in generalized theories
of thermoelasticity has studied [5-7].

Propagation of plane waves at the interface of an elastic solid half–space and
a microstretch thermoelastic diffusion, solid half–space was investigated by Kumar
et al. [8]. The problem related to reflection and refraction of elastic waves from the
boundaries of different media has been discussed in the famous book by Achenbach
[9]. Mathematical work has been performed for the propagation of elastic waves
in a dissipative medium; see for instance, have been studied by many authors [10–
13]. By using the Biot’s theory [14] several researchers have studied extensively the
propagation of elastic waves [15–18].

Kaur and Sharma [19] discussed reflection and transmission of thermoelastic plane
waves at liquid–solid interface. Borejko [20] introduced the reflection and trans-
mission coefficients for three dimensional plane waves in elastic media. Singh
and Bala [21] purposed the reflection of p– and SV–waves from the free surface
of a two–temperature thermoelastic solid half–space. Singh [22] and Abd–alla et
al. [23] studied the reflection of magneto–thermo–viscoelastic waves in different ap-
proaches. Abo–Dahab and Mohamed [24] and Abo–Dahab [25] studied the reflection
of magneto–thermoelastic p- and SV-waves under different conditions. Singh and
Yadav [26] discussed the reflection of plane waves in a rotating transversely isotropic
magneto-thermoelastic solid half–space. Some researchers have investigated differ-
ent problems of rotating media. Schoenberg and Censor [27] studied the propagation
of plane harmonic waves in a rotating elastic medium without a thermal field. The
effect of rotation on elastic waves was discussed [28, 29]. Abo–Dahab and Abbas [30]
discussed the thermal shock problem of generalized magneto–thermoelasticity with
variable thermal conductivity. Abo–Dahab and Singh [31] studied the influence of
magnetic field on wave propagation in a generalized thermoelastic solid with diffu-
sion. Also, an investigation of the distribution of deformation, stresses and magnetic
field in a uniformly rotating, homogeneous, isotropic, thermally and electrically con-
ducting elastic half–space was presented by Chand et al. [32]. The effect of rotation,
initial stress and temperature dependent elastic moduli in a magneto–thermoelastic
medium has been studied by Othman and Song [33–35]. Chakraborty [36] discussed
reflection of plane elastic waves in half–space subjected to temperature and initial
stress.

The present paper is concerned with the investigations related to the effect of rota-
tion and initial stress with two–temperature on a generalized thermoelastic medium
under three theories by applying the normal mode analysis, also, the effect of ro-
tation and initial stress on the physical quantities. The results are plotted with
MATLAB software to show the effect of temperature, magnetic field, relaxation
time and initial stresses on the reflection.

2. Formulation of the problem and basic equations

We consider a homogeneous thermoelastic half–space with two–temperature under
the initial stress and magnetic field. All quantities are considered are functions of the
time variable t and of the coordinates x and y. We consider the normal source acting
on the plane surface of generalized thermoelastic half–space under the influence of
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gravity. The system of governing equations of a linear thermoelasticity with initial
stress and without body forces consists of:
The stress–strain relation written as:

σij = −p(δij + ωij) + 2µeij + λeδij − γ(1 + υ0
∂

∂t
)Tδij (1)

eij =
1

2
(ui,j + uj,i), ωij =

1

2
(uj,i − ui,j)i, j = 1, 2 (2)

The heat conduction equation:

KΘ,ii = ρCE(1 + τ0
∂

∂t
)Ṫ + γT0(1 + n0τ0

∂

∂t
)ė (3)

T = Θ − a∗Θ,ii (4)

where σij are the stress components, λ, µ are the Lame’ constants, γ = (3λ +
2µ)αt, αt is the thermal expansion coefficient, δij is the Kronecker delta, T is the
temperature above the reference temperature T0, k is the thermal conductivity, n0

is a parameter, τ0, υ0 are the relaxation times, ρ is the density, CE is the specific
heat at constant strain, a∗ is a constant, Θ is the conductive temperature and p is
an initial stress.
The equations of motion:
Since the medium is rotating uniformly with an angular velocity Ω = Ωn where n
is a unit vector representing the direction of the axis of the rotation, the equation
of motion in the rotating frame of reference has two additional terms (Schoenberg
and Censor [27]): centripetal acceleration Ω × (Ω× u) due to time varying motion
only and Corioli’s acceleration 2Ω × u̇, then the equation of motion in a rotating
frame of reference is:

ρ[üi + {Ω × (Ω × u)}i + 2(Ω× u̇)i] = σij,j + Fi, i, j = 1, 2, 3 (5)

Where Fi is the Lorentz force and is given by:

Fi = µ0(J ×H )i (6)

The variation of the magnetic and electric fields are perfectly conducting slowly
moving medium and are given by Maxwell’s equations:

curlh = J+ε0 Ė (7)

curlE = − µ0 ḣ (8)

E=− µ0 (u̇×H (9)

div h = 0 (10)

Where µ0 is the magnetic permeability, ε0 is the electric permeability, J is the
current density vector, E is the induced electric field vector and h is the induced
magnetic field vector.
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Expressing components of the vector J= (J1 , J2 , J3 ) in terms of the displacement
by eliminating the quantities h and E from Eq. (7), thus yields:

J1= h,y+ε0µ0H0v̈ J2=− h,x − ε0µ0H0ü J3= 0 (11)

Substituting from equation (11) in equation (6), we get:

F1=− µ0H0h,x − ε0µ
2
0H

2
0ü F2=− µ0H0h,y − ε0µ

2
0H

2
0v̈ F3= 0 (12)

From Eqs. (2), (12) in Eq. (5), we get:

ρ(ü− Ω2u − 2Ω v̇) = (µ− p/2)∇2u+ (λ+ µ+ p/2)e,x − γ(1 + υ0
∂

∂t
)T,x

−µ0H0h,x − ε0µ
2
0H

2
0 ü (13)

ρ(v̈ − Ω2v+2Ω u̇) = (µ− p/2)∇2v + (λ+ µ+ p/2)e,y − γ(1 + υ0
∂

∂t
)T,y

−µ0H0h,y − ε0µ
2
0H

2
0 v̈ (14)

From Eqs. (7)-(10), we can obtain that:

h=− H0 e (15)

Eq. (3) and Eqs. (13), (14) are the field equations of the generalized linear magneto–
thermoelasticity for a rotating media, applicable to the coupled theory, three gene-
ralizations, as follows:
- The equations of the coupled (CT) theory, when:

τ0 = υ0 = 0

- Lord-Shulman (L-S) theory, when:

n0 = 1, υ0 = 0, τ0 > 0

- Green-Lindsay (G-L) theory, when:

n0 = 0, υ0 ≥ τ0 > 0

The constitutive relations, using Eq. (2), can be written as:

σxx= (λ+ 2µ)u,x+λv,y − γ(1 + υ0
∂

∂t
)T − p (16)

σyy= (λ+ 2µ)v,y+λu,x − γ(1 + υ0
∂

∂t
)T − p (17)

σxy= µ(u,y+v,x)− (p/2)(v,x − u,y) (18)

For simplification, the following non–dimensional variables are used:

x′
i =

ω∗

c0
xi u′

i =
ρc0ω

∗

γT0
ui {t′, τ ′0, υ′

0} = ω∗{t, τ0, υ0}

{T ′,Θ ′} =
{T, Θ}

T0
σ′
ij =

σij

γT0
h ′=

h

H0
(19)

Ω ′ =
Ω

ω∗ p′ =
p

λ+2µ
i, j = 1, 2, 3
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where: ω∗ = ρCEc
2
0/K and c20 = (λ+ 2µ)/ρ.

In terms of the non–dimensional quantities defined in (19) and using (15), the above
governing equations take the form (dropping the primes over the non–dimensional
variables for convenience):

αü− Ω2u− 2Ωv̇=β∇2u+ h2
∂e

∂x
− (1− a∇2)(1 + υ0

∂

∂t
)Θ,x (20)

αv̈ − Ω2v + 2Ωu̇=β∇2v + h2
∂e

∂y
− (1− a∇2)(1 + υ0

∂

∂t
)Θ,y (21)

∇2Θ = (1 + τ0
∂

∂t
)

.

Θ +ε(1 + n0τ0
∂

∂t
)ė (22)

T = (1− a∇2)Θ (23)

where: α = 1 +
ε0µ

2
0H

2
0

ρ , β = µ
ρc20

− p
2 , h2=h1+h0, h1 = λ+µ

ρc20
+ p

2 , h0 =
µ0H

2
0

ρc20
,

ε = γ2T0

ρ2CEc20
, a = a∗ω∗2

c20
. Also, the constitutive relations (16)–(18) reduces to:

σxx= u,x+a1v,y − (1 + υ0
∂

∂t
)T − p1 (24)

σyy= v,y+a1u,x − (1 + υ0
∂

∂t
)T − P1 (25)

σxy = a3u,y + a4v,x (26)

a1 =
λ

ρc20
P1 = a2P a2 =

λ+ 2µ

γT0
a3 =

µ+ p/2

ρc20
a4 =

µ− p/2

ρc20

We shall consider only the two-dimensional problem. Assuming that all variables
are functions of space coordinates x, y and time t and independent of coordinate z.
So the displacement components are ux = u(x, y, t), uy = ν(x, y, t), uz = 0.
We introduce the scalar potential Φ(x, y, t) and the vector potential Ψ(x, y, t) which
related to displacement components by the relations:

u = Φ,x +Ψ,y, ν = Φ,y −Ψ,x (27)

Using Eqs. (1)–(3), the two-dimensional equations of motion and the heat-conduction
equation become, respectively:

[α ∂2

∂t2 − Ω2 − (β + h2)∇2]Φ + 2ΩΨ̇ + (1− a∇2)(1 + υ0
∂

∂t
)Θ = 0 (28)

(α ∂2

∂t2 − Ω2 − β∇2)Ψ − 2ΩΦ̇ = 0 (29)

∇2Θ = (1 + τ0
∂

∂t
)(1− a∇2)Θ̇ + ε(1 + n0τ0

∂

∂t
)∇2Φ̇ (30)

We assume now the solution of Eqs. (28)–(30) takes the following form:

{Φ,Ψ ,Θ} =
{
Φ̄, Ψ̄ , Θ̄

}
exp[iξ(x sin θ + y cos θ)− iωt] (31)
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Substitute from Eq. (31) in Eqs. (28)–(30), we get:

(ξ2 − b1)Φ̄−b2Ψ̄+(b3 + b4ξ
2)Θ = 0 (32)

(ξ2 − b5)Ψ̄+b6Φ̄ = 0 (33)

(ξ2 − b7)Θ + b8ξ
2Φ̄ = 0 (34)

b1 = (αω2 + Ω2)/(β + h2) b2 = 2iωΩ/(β + h2) b3 = (1− iωυ0)/(β + h2)

b4 = a(1− iωυ0)/(β + h2) b5 = (αω2 + Ω2)/β b6 = 2iωΩ/β

b7 = iω(1−iωτ0)
[1−iωa(1−iωτ0)]

b8 = iωε(1−iωn0τ0)
[1−iωa(1−iωτ0)]

Equations (32)–(34) have a nontrivial solution if and only if the determinant van-
ished, so: ∣∣∣∣∣∣

ξ2 − b1 −b2 b3 + b4ξ
2

b6 ξ2 − b5 0
b8ξ

2 0 ξ2 − b7

∣∣∣∣∣∣ = 0

Aξ6 +Bξ4 + Cξ2 +D = 0 (35)

A = 1− b4b8 B = − b1 − (b5 + b7)− b8b3 + b5b8b4

C = b5b7 + b1(b5 + b7) + b2b6 + b5b8b3 D = − b1b5b7 − b2b6b7

3. Solution of the problem

Where, Eq. (32) has three roots in ξ2, there are three coupled waves T–wave,
p–wave and SV–wave with three different velocities. Assuming that the radiation
in vacuum is neglected, when a coupled wave falls on the boundary z = 0 from within
the thermoelastic medium, it will make an angle θ with the negative direction of
the z-axis, and three reflected waves that will make angles θ and θi (i = 1, 2, 3) with
the same direction as shown in Fig. 1.

The displacement potentials, Φ and Ψ , the conductive temperature Θ , will take the
following forms:

Φ = A0 exp[iξ0(x sin θ0 + y cos θ0)− iω t]

(36)

+

3∑
j=1

Aj exp[iξj(x sin θj − y cos θj)− iω t]

Ψ̄ = B0 exp[iξ0(x sin θ0 + y cos θ0)− iω t]

(37)

+
3∑

j=1

Bj exp[iξj(x sin θj − y cos θj)− iω t]
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Θ = C0 exp[iξ0(x sin θ0 + y cos θ0)− iω t]

(38)

+
3∑

j=1

Cj exp[iξj(x sin θj − y cos θj)− iω t]

where: Bj = ηjAj , Cj = DjAj , ηj =
− b6

ξ2j − b5
, Dj =

− b8ξ
2
j

ξ2j − b7
, j = 0, 1, 2, 3

Substitute from Eqs. (36)–(38) in Eq. (27), we get:

u = iξ0(A0 sin θ0 +B0 cos θ0) exp[iξ0(x sin θ0 + y cos θ0)− iω t]

+

3∑
j=1

iξj(Aj sin θj −Bj cos θj) exp[iξj(x sin θj − y cos θj)− iω t] (39)

v = iξ0(A0 cos θ0 −B0 sin θ0) exp[iξ0(x sin θ0 + y cos θ0)− iω t]

−
3∑

j=1

iξj(Aj cos θj −Bj sin θj) exp[iξj(x sin θj − y cos θj)− iω t] (40)

Substitute from Eqs. (39), (40), (23), (38) in Eq. (24)–(26), we get:

σxx = [− sin2 θ0ξ
2
0A0 + (a1 − 1)

Bj

2 sin 2θ0ξ
2
0 − a1 cos

2 θ0ξ
2
0A0

+(1− iω υ0 + ξ20a− iω υ0aξ
2
0)C0] exp[iξ0(x sin θ0 + y cos θ0)− iω t]

+
3∑

j=1

[Aj sin
2 θjξ

2
j + (1− a1)

Bj

2 sin 2θjξ
2
j +Aja1 cos

2 θjξ
2
j (41)

+(1− iω υ0 + ξ2j a− iω υ0aξ
2
j )Cj ] exp[iξj(x sin θj − y cos θj)− iω t]− p1

σyy= [− ξ20(a1(A0 sin θ0 +B0 cos θ0) sin θ0 + (A0 cos θ0 −B0 sin θ0) cos θ0]

+(1− iω υ0 + ξ20a− iω υ0aξ
2
0)C0] exp[iξ0(x sin θ0 + y cos θ0)− iω t]

+

3∑
j=1

{ξ2j [(Aj cos θj −Bj sin θj) cos θj − a1(Aj cos θj −Bj sin θj) sin θj)] (42)

+(1− iω υ0 + ξ2j a− iω υ0aξ
2
j )Cj} exp[iξj(x sin θj − y cos θj)− iω t]− p1

σxy = [−(a3 + a4)A0
ξ20
2

sin 2θ0 + (−a3 cos
2 θ0 + a4 sin

2 θ0)ξ
2
0B0]

exp[iξ0(x sin θ0 + y cos θ0)− iω t] +
3∑

j=1

[Aj(a3 + a4)
ξ2j
2

sin 2θj (43)

+(− a3 cos
2 θj + a4 sin

2 θj)ξ
2
jBj ] exp[iξj(x sin θj − y cos θj)− iω t]
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3. Boundary conditions

On the plane surface y= 0, are:

σxx + τxx = −p1 σxy + τxy = 0
∂Θ

∂y
= 0 (44)

where, Maxwell’s stresses are as follows:

τij = µe[Hihj +Hjhi −Hkhkδij ]

For the reflected waves, the wave numbers and the reflected angles may be written
as:

ξ0 sin θ0 = ξ1 sin θ1 = ξ2 sin θ2 = ξ3 sin θ3 (45)

Figure 1 Geometry of the problem

Substituting from Eqs. (38), (41), (42) into the boundary conditions in Eq. (44),
we obtain a system of three algebraic equations takes the form:∑

AijXj = Bi i, j = 1, 2, 3 (46)

A1j = Djξj cos θj

A2j = (a3 + a4)
ξ2j
2

sin 2θj + (− a3 cos
2 θj + a4 sin

2 θj)ξ
2
j ηj

A3j = −µeH
2
0 ξ

2
j − sin2 θjξ

2
j + (1− a1)

ηj

2 sin 2θjξ
2
j + a1 cos

2 θjξ
2
j

+(1− iω υ0 + ξ2j a− iω υ0aξ
2
j )Dj

and:

X1 =
A1

A0
X2 =

A2

A0
X3 =

A3

A0
B1 = D0ξ0 cos θ0



Reflection of Plane Waves from a Rotating Magneto–Thermoelastic ...225

B2 = (a3 + a4)
ξ20
2

sin 2θ0 + (a3 cos
2 θ0 − a4 sin

2 θ0)ξ
2
0η0

B3 = µeH
2
0 ξ

2
0 + sin2 θ0ξ

2
0 + (1− a1)

ηj

2 sin 2θ0ξ
2
0 + a1 cos

2 θ0ξ
2
0

−(1− iω υ0 + ξ20a− iω υ0aξ
2
0)D0

where A0, A1, A2, A3 are the amplitudes of the incident and reflected waves respec-
tively.

4. Numerical results and discussion

In the view to illustrate the computational work, the following material constants
at T0 = 293 oC are considered a copper material for an elastic solid with generalized
thermoelastic solid as follow:

ρ = 8954 kgm−3 µ = 3.86× 1010 kgm−1s−2 λ = 7.76× 1010 kgm−1s−2

µe = 4π(10)−7Hm−1 µ0 = 4.0× 1011 dyne/cm2 k = 386m−1k−1

αt = 1.78× 10−5k−1 CE = 383.1 J/kgK ε0 = 0.1× 10−4

a∗ = 0.1× 10−3 ω = ω0 + iζ ω0 = 2 ζ = 1

From Fig. 2–13, we can see that for the reflection coefficient X1 = 1 while, the
reflection coefficients X2 and X3 equal zero when the angle of incidence θ = 90o.

0 10 20 30 40 50 60 70 80 90
1

1.02

1.04

1.06

X
1

q

CT

L-S

G-L

Figure 2 Variation of the reflection coefficient X1 with varies values of the angle of incidence
under three theories

Figs. 2–4 display a comparison between the three thermoelastic theories (i.e. CT,
L–S and G–L). It is shown from Fig. 4 that the values of the reflection coefficient
X3 considering (CT) theory is less than the corresponding value considering (L–S)
theory less than it takes into account (G–L) theory attending to zero at θ = 90o,
while in Figs. 2 and 3 it is shown that X1 and X2 do not affect by the variation of
three theories.
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Figure 3 Variation of the reflection coefficient X2 with varies values of the angle of incidence
under three theories
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Figure 4 Variation of the reflection coefficient X3 with varies values of the angle of incidence
under three theories
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Figure 5 Variation of the reflection coefficient X1 with varies values of the angle of incidence
under the rotation
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Figure 6 Variation of the reflection coefficient X2 with varies values of the angle of incidence
under the rotation
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Figure 7 Variation of the reflection coefficient X3 with varies values of the angle of incidence
under the rotation

Figs. 5–7 display the influence of rotation parameter Ω = 0.1, 0.3, 0.5, 0.7 on the
amplitudes of the reflected waves p–, T–, and SV–waves due to the incident p–wave
with respect to the angle of incidence θ. We note that the amplitude of reflected
p–wave with smaller values of the angle of incidence (i.e. θ = 0o, 25o) increases
with the increase of the rotation, but it increases with a decreasing of it with the
increasing of angle of incidence (i.e. θ = 25o, 90o) attends to unity at θ = 90o.
Concern the amplitude of X2 for the reflected T–wave, increases with an increasing
of the rotation with smaller values of the angle of incidence (i.e. θ = 0o, 40o), while
decreases with the increase of the angle of incidence (i.e. θ = 40o, 90o). Concern
the amplitude of X3 for the reflected SV–wave, increases with an increasing of the
rotation with smaller values of the angle of incidence (i.e. θ = 0o, 90o) attend to
zero at θ = 90o.
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Figure 8 Variation of the reflection coefficient X1 with varies values of the angle of incidence
under the magnetic field
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Figure 9 Variation of the reflection coefficient X2 with varies values of the angle of incidence
under the magnetic field
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Figure 10 Variation of the reflection coefficient X3 with varies values of the angle of incidence
under the magnetic field
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Figs. 8–10, display the influence of magnetic field parameter H0 = (2, 3, 7, 9) ×
103on the amplitudes of the reflected waves p–, T–, and SV–waves due to the
incident p–wave with respect to the angle of incidence θ. We note that the amplitude
of reflected p–wave with smaller values of the angle of incidence (i.e. θ = 0o, 90o)
decrease with an increasing of the magnetic field. Concern the amplitude X2 for
reflected T–wave, increases with a decreasing of the rotation with smaller values
of the angle of incidence (i.e. θ = 0o, 15o), while decreasing with an increasing
of it with the increase of the angle of incidence (i.e., θ = 15o, 90o) attend to zero
at θ = 90o. Concern the amplitude of X3 of reflected SV–wave, decreases with
an increasing of the rotation with smaller values of the angle of incidence (i.e.
θ = 0o, 90o) attend to zero at θ = 90o.
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Figure 11 Variation of the reflection coefficient X1 with varies values of the angle of incidence
under the initial stress
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Figure 12 Variation of the reflection coefficient X2 with varies values of the angle of incidence
under the initial stress
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Figure 13 Variation of the reflection coefficient X3 with varies values of the angle of incidence
under the initial stress

Figs. 11–13, display the influence of initial stress parameter P = (2, 4, 6, 8) × 1010

on the amplitudes of the reflected waves p–, T–, and SV–waves due to the incident
p-wave with respect to the angle of incidence θ. We note that the amplitude of
reflected p- wave with smaller values of the angle of incidence increases with an
increasing of the initial stress attends to unity at θ = 90o. Concern the amplitude
of X2 of the reflected T- wave, increases with the decrease of the initial stress with
small values of the angle of incidence (i.e. θ = 0o, 7o), while decreases with the
increase of it with the increasing of the angle of incidence (i.e. θ = 7o, 90o) attend
to zero at θ = 90o. Concern the amplitude of X3 of the reflected SV-wave, decreases
with an increasing of the initial stress with smaller values of the angle of incidence
(i.e. θ = 0o, 90o) attend to zero at θ = 90o.

5. Conclusion

The reflection of p–wave at the free surface under initial stress, two temperature,
magnetic field and rotation is discussed in the context of three theories. The derived
expressions of reflection coefficient are obtained from incident p–wave for a copper
material. The reflection coefficients ratios are computed and presented graphically
with the angle of incidence θ for different values of rotation and magnetic and also
angle of incidence. From the graphical results representation, it is obvious that
the presence of rotation and magnetic field parameters affect significantly to the
reflection coefficients.
We concluded the following remarks:

1. The rotation and magnetic field influence strongly on the amplitudes that
has a significant role and a lot of applications in diverse fields, especially,
geophysics, industries, engineering, astrophysics, . . . , etc.

2. The angle of incidence θ has a significant effect on the reflection coefficient,
so tends to unity for p-waves, but tend to zero for T- and SV-waves when the
incident wave in normalized on the free surface.
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3. Also, it is obvious that initial stress affects strongly on X3 but do not affect
on the other amplitudes.

4. Finally, it is obvious that there is a variation between the three models
of thermo–elasticity on X3 but X1 and X2 do not affect.
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