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The present paper aims to study the effect of initial stress on the 2–D problem of a homo-
geneous, isotropic, generalized thermo-viscoelastic material with voids in the context of
Green–Naghdi theory. The modulus of elasticity is taken as a linear function of reference
temperature. The analytical expressions for the physical quantities are obtained in the
physical domain by using the normal mode analysis. These expressions are calculated
numerically for a specific material and explained graphically. Comparisons are made
with the results predicted by (G–N II) and (G–N III) theory in the presence and absence
of the initial stress and temperature-dependent properties.
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1. Introduction

The linear viscoelasticity remains an important area of research. Gross [1], Staver-
man, Schwarzl [2], Alfrey and Gurnee [3] and Ferry [4] investigated the mechanical
model representation of linear viscoelastic behavior results. Solution of the bound-
ary value problems for linear viscoelastic materials, including temperature variations
in both quasi–static and dynamic problems made great strides in the last decades,
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in the work of Biot [5, 6] and Huilgol and Phan-Thien [7]. Bland [8] linked the so-
lution of linear-viscoelasticity problems with corresponding linear elastic solutions.
A notable works in this field were the work of Gurtin and Sternberg [9], and Ilioushin
[10] offered an approximation method for the linear thermal viscoelastic problems.
One can refer to the book of Ilioushin and Pobedria [11] for a formulation of the
mathematical theory of thermal viscoelasticity and the solutions of some boundary
value problems, as well as, to the work of Pobedria [12] for the coupled problems
in continuum mechanics. Results of important experiments determining the me-
chanical properties of viscoelastic materials were involved in the book of Koltunov
[13]. Othman [14] studied the uniqueness and reciprocity theorems for generalized
thermo–viscoelasticity.

The heat conduction equations for the classical linear uncoupled and coupled thermo-
elasticity theories are of the diffusion type predicting infinite speed of propagation
of heat wave contrary to physical observations. To eliminate this paradox inherent
in the classical theories, generalized theories of thermoelasticity were developed.
The generalized thermoelasticity theories admit so-called second-sound effects, that
is, they predict the finite velocity of propagation for heat field. The first attempt
towards the introduction of generalized thermoelasticity was headed by Lord and
Shulman [15], who formulated the theory by incorporating a flux-rate term into con-
ventional Fourier’s law of heat conduction. The Lord-Shulman theory introduces
a new physical concept which called a relaxation time. Since the heat conduction
equation of this theory is of the wave-type, it automatically ensures finite speed of
propagation of heat wave. The second generalization was developed by Green and
Lindsay [16]. This theory contains two constants that act as relaxation times and
modifies all the equations of coupled theory, not the heat conduction equation only.
Later on, Green and Naghdi [17, 18, 19] proposed another three models, which are
subsequently referred to as (GN–I), (GN–II), and (GN–III) models. The linearized
version of model-I corresponds to the classical thermoelastic model–II for which the
internal rate of production of entropy is taken to be identically zero, implying no
dissipation of thermal energy. This model assumes un-damped thermoelastic waves
in a thermoelastic material and is best known as the theory of thermoelasticity
without energy dissipation. Model–III includes the previous two models as special
cases, and assumes dissipation of energy in general.

The theory of elastic materials with voids is one of the most important general-
izations of the classical theory of elasticity. This theory is concerned with elastic
materials consisting of a distribution of small pores (voids, which contain nothing of
mechanical or energetic significance) in which the void volume is included among the
kinematic variables. Practically, this theory is useful for investigating various types
of geological and biological materials for which elastic theory is inadequate. Nunzi-
ato and Cowin [20] studied a non-linear theory of elastic materials with voids. They
showed that the changes in the volume fraction cause an internal dissipation in the
material and this internal dissipation leads to a relaxation property in the material.
Cowin and Nunziato [21] developed a theory of linear elastic materials with voids for
the mathematical study of the mechanical behavior of porous solids. This linearized
theory of elastic materials with voids is a generalization of the classical theory of
elasticity and reduces to it when the dependence of change in volume fraction and
its gradient are suppressed. In this theory, the volume fraction corresponding to
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void volume is taken as an independent kinematic variable. Puri and Cowin [22]
studied the behavior of plane waves in a linear elastic material with voids. Domain
of influence theorem in the linear theory of elastic materials with voids was discussed
by Dhaliwal and Wang [23]. Dhaliwal and Wang [24] also developed a heat-flux de-
pendent theory of thermoelasticity with voids. Cowin [25] studied the viscoelastic
behavior of linear elastic materials with voids. Othman [26] has developed a linear
theory of generalized thermo-viscoelasticity under three theories. While a nonlinear
and linear theory of thermo–viscoelastic materials with voids studied by Ieşan [27].
Othman [28] investigated the uniqueness and reciprocity theorem for generalized
thermo–viscoelasticity with thermal relaxation times, Othman et. al [29, 30] have
studied much interest applications dealing of thermoelasticity with voids.

Most of the investigations were done under the assumption of temperature–indepen-
dent material properties, which limit the applicability of the solutions obtained to
certain ranges of temperature. Modern structural elements are often subjected to
temperature change of such magnitude that their material properties may be longer
be regarded as

having constant values even in an approximate sense. At high temperature the
material characteristics such as modulus of elasticity, thermal conductivity and the
coefficient of linear thermal expansion are no longer constants. The thermal and
mechanical properties of the materials vary with temperature, so the temperature-
dependent on the material properties must be taken into consideration in the ther-
mal stress analysis of these elements. Noda [31] studied the thermal stresses in
materials with temperature-dependent properties.

The initial stresses are developed in the medium due to many reasons, resulting from
difference of temperature, process of quenching, shot pinning and cold working, slow
process of creep, differential external of forces, gravity variations, etc. The Earth
is supposed to be under high initial stresses. It is therefore of great interest to
study the effect of these stresses on the propagation of stress waves. During the last
five decades, considerable attenuation has been directed towards this phenomenon.
Biot [32] depicted that the acoustic propagation under initial stresses would be
fundamentally different from that under stress free state.

The present work is to obtain the physical quantities in a homogenous, isotropic,
thermo-visco-elastic material with voids in the case of absence and presence of initial
stress and temperature dependent. The model is illustrated in the context of (GN–
II), and (GN–III) theories. The normal mode analysis is used to obtain the exact
expressions for physical quantities. The distributions of considered variables are
represented graphically.

2. Formulation of the problem

We consider a homogeneous, isotropic, thermally conducting viscoelastic half-space
z ≥ 0 with voids and temperature-dependent mechanical properties. For the two
-dimensional problem we assume the dynamic displacement vector as u = (u, 0, w).
All quantities considered will be functions of the time variable t and of the coordi-
nates x and z. The whole body is at a constant temperature T0. The basic governing
equations for a linear generalized visco-thermoelastic media with voids under the
effect of initial stress and temperature-dependent properties in the absence of body
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forces are written by Ieşan [27] and Green and Naghdi [19]:

(µ∗ + p)∇2u + (λ∗ + µ∗)∇(∇ · u)− β∗∇T + b∗∇ϕ = ρ ü (1)

A∗∇2ϕ− ξ1ϕ− ξ2ϕ̇−B∗(∇ · u) + (τ∇2 +m)T = ρχϕ̈ (2)

ρCeT̈ + β∗T0ë+ (mT0 − ς∇2)ϕ̇ = K∇2T +K∗∇2Ṫ (3)

And the constitutive relations are given by:

σij = (µ∗ + p)ui,j + µ∗uj,i + [λ∗uk,k − β∗T + b∗ϕ]δij (4)

The parameters λ∗, µ∗, β∗, A∗, B∗and b∗are defined as:

λ∗ = λ(1 + α0
∂

∂t
) µ∗ = µ(1 + α1

∂

∂t
) β∗ = β(1 + β0

∂

∂t
)

A∗ = A(1 + α3
∂

∂t
) B∗ = b(1 + α4

∂

∂t
) b∗ = b(1 + α2

∂

∂t
) (5)

where: β0 = 1
β (3λα0 + 2µα1)αt, β = (3λ + 2µ)αt, λ, µ are the Lame’ constants,

σij is the components of the stress tensor, p is the initial stress, ϕ is the volume
fraction field, A, ξ1, ξ2, B, τ, ς, m, χ are the material constants due to the
presence of voids, T is the temperature deviation from the reference temperature
T0, K, ρ and Ce are the thermal conductivity, density and specific heat at constant
strain, α0, α1, α2, α3, α4 are the visco–elastic parameters, αt is the coefficient
of linear thermal expansion, e is the dilatation and δij is Kronecker’s delta. The
dot notation is used to denote time differentiation. The strain tensor is eij =
1
2 (ui,j + uj,i), i, j = 1, 3.
Our aim is to investigate the effect of temperature dependence of modulus of elas-
ticity, keeping the other elastic and thermal parameters as constant. Therefore we
may assume that:

{λ, µ, β, b, A, ξ1, ξ2, τ,m, χ, ς,K} =
{
λ̄, µ̄, β̄, b̄, Ā, ξ̄1, ξ̄2, τ̄ , m̄, χ̄, ς̄ , K̄

}
f(T ) (6)

where λ̄, µ̄, β̄, b̄, Ā, ξ̄1, ξ̄2, τ̄ , m̄, χ̄, ς̄ , K̄ and K̄ are constants and f(T ) is a given
non–dimensional function of temperature such that f(T ) = 1− α∗T0 (where α∗ is
an empirical material constant). In the case of a temperature independent modulus
of elasticity we have f(T ) = 1. For x− z plane, Eq. (1) gives rise to the following
two equations:

[µ(1 + α1
∂

∂t
) + p]∇2u+ [λ(1 + α0

∂

∂t
) + µ(1 + α1

∂

∂t
)]
∂e

∂x
− β(1 + β0

∂

∂t
)
∂T

∂x

+ b(1 + α2
∂

∂t
)
∂ϕ

∂x
= ρ

∂2u

∂t2
(7)

[µ(1 + α1
∂

∂t
) + p]∇2w + [λ(1 + α0

∂

∂t
) + µ(1 + α1

∂

∂t
)]
∂e

∂z
− β(1 + β0

∂

∂t
)
∂T

∂z

+ b(1 + α2
∂

∂t
)
∂ϕ

∂z
= ρ

∂2w

∂t2
(8)
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For simplifications we shall use the following non-dimensional variables:

x′
i =

ϖ

c1
xi u′

i =
ρc1ϖ

β̄T0
ui T ′ =

T

T0
ϕ′ =

ϖ2χ̄

c21
ϕ t′ = ϖt

σ′
ij =

σij

β̄T0
p′ =

p

ρc21
{α′

0, α
′
1, α

′
2, α

′
3, α

′
4} = ϖ {α0, α1, α2, α3, α4} (9)

c21 =
λ̄+ 2µ̄

ρ
c22 =

µ̄

ρ
ϖ =

Ce(λ̄+ 2µ̄)

K

where, ϖ is the characteristic frequency of the material and c1, c2 are the longitu-
dinal and shear wave velocities in the medium, respectively.
Using Eq. (9), then Eqs. (7), (8), (2) and (3) become respectively (dropping the
dashed for convenience):

[δ2(1 + α1
∂

∂t
) + a0p]∇2u+ [(1− 2δ2)(1 + α0

∂

∂t
) + δ2(1 + α1

∂

∂t
)]
∂e

∂x

− (1 + β0
∂

∂t
)
∂T

∂x
+ a1(1 + α2

∂

∂t
)
∂ϕ

∂x
= q

∂2u

∂t2
(10)

[δ2(1 + α1
∂

∂t
) + a0p]∇2w + [(1− 2δ2)(1 + α0

∂

∂t
) + δ2(1 + α1

∂

∂t
)]
∂e

∂z

− (1 + β0
∂

∂t
)
∂T

∂z
+ a1(1 + α2

∂

∂t
)
∂ϕ

∂z
= q

∂2w

∂t2
(11)

(1 + α3
∂

∂t
)∇2ϕ− a2(ϕ+ ξϕ̇)− a3(1 + α4

∂

∂t
)e+ (a4∇2 + a5)T =

ϕ̈

δ21
(12)

T̈ + ε1(1 + β0
∂

∂t
)ë+ a6ϕ̇− a7∇2ϕ̇ = ε2∇2T + ε3∇2Ṫ (13)

where: a0 = q
ρc21

, a1 =
b̄c21

ϖ2χ̄β̄T0
, a2 =

ξ̄1c
2
1

Āϖ2 , a3 = b̄χ̄β̄T0

Āρc21
, a4 = τ̄ϖ2χ̄T0

Āc21
,

a5 =
m̄χ̄T0

Ā
, a6 =

m̄c21
qρCeϖ3χ̄

, a7 =
ς̄

qρCeϖχ̄T0
, ε1 =

β2T0

qρ2c21Ce
, ε2 =

K̄

qρCec21
,

ε3 =
K∗ϖ

ρCec21
, δ2 =

c22
c21

, c23 =
Ā

ρχ̄
, δ21 =

c23
c21

, ξ =
ξ̄2ϖ

ξ̄1
, q =

1

f(T )
, i, j = 1, 3.

The non–dimensional constitutive relations are given by:

σij =
1

q
[(δ2(1 + α1

∂

∂t
) + a0p)ui,j + δ2(1 + α1

∂

∂t
)uj,i]

+
1

q
[(1− 2δ2)(1 + α0

∂

∂t
)uk,k − (1 + β0

∂

∂t
)T + a1(1 + α2

∂

∂t
)ϕ]δij (14)

The expressions relating displacement components u(x, z, t), w(x, z, t) to the po-
tentials are:

u = Φ,x + Ψ,z w = Φ,z − Ψ,x e =
∂u

∂x
+

∂w

∂z
= ∇2Φ

∂u

∂z
− ∂w

∂x
= ∇2Ψ (15)
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Substituting from Eq. (15) into Eqs. (10)-(13), we obtain:

[δ2(1 + α1
∂

∂t
) + a0p]∇2Ψ = qΨ̈ (16)

(1 + a0p+ δ0
∂

∂t
)∇2Φ − (1 + β0

∂

∂t
)T + a1(1 + α2

∂

∂t
)ϕ = qΦ̈ (17)

(1 + α3
∂

∂t
)∇2ϕ− a2(ϕ+ ξϕ̇)− a3(1 + α4

∂

∂t
)∇2Φ + (a4∇2 + a5)T =

ϕ̈

δ21
(18)

T̈ + ε1(1 + β0
∂

∂t
)∇2Φ̈ + a6ϕ̇− a7∇2ϕ̇ = ε2∇2T + ε3∇2Ṫ (19)

where: δ0 = α0 + 2δ2(α1 − α0).

3. Normal mode method

The solution of the considered physical variable can be decomposed in terms of
normal modes as the following form:

[Φ,Ψ , T, ϕ, σij ](x, z, t) = [Φ̄, Ψ̄ , T̄ , ϕ̄, σ̄ij ](z) exp[ω t+ iax] (20)

where, ω is the frequency, a is the wave number in the x−direction and i =
√

− 1.
Eqs. (16)-(19) with the aid of Eq. (20) become respectively:

(D2 − k21)Ψ̄ = 0, (21)

(b1D
2 − b2)Φ̄ − b3T̄ + b4ϕ̄ = 0, (22)

(b5D
2 − b6)Φ̄ − (a4D

2 − b7)T̄ − (b8D
2 − b9)ϕ̄ = 0, (23)

(b10D
2 − b11)Φ̄ − (b12D

2 − b13)T̄ − (b14D
2 − b15)ϕ̄ = 0 (24)

where:

D =
d

dz
k21 = a2+

qω2

δ2 (1 + α1ω) + a0p
b1 = 1+a0p+ωδ0 b2 = b1a

2+qω2

b8 = 1+α3ω b9 = b8a
2+a2(1+ξω)+

ω2

δ21
b10 = ε1ω

2(1+β0ω) b11 = b10a
2

b12 = ε2 + ε3ω b13 = b12a
2 + ω2 b14 = a7ω b15 = b14a

2 + a6ω

Eliminating T̄ and ϕ̄ between Eqs. (22)-(24) we get the following ordinary differen-
tial equation satisfied with Φ̄:

(D6 − d1D
4 + d2D

2 − d3)Φ̄ = 0 (25)

where:

d1 =
f1
f0

d2 =
f2
f0

d3 =
f3
f0

f0 = b1(a4b14 − b8b12)

f1 = a4(b1b15 + b2b14 − b4b10)− b1(b9b12 + b8b13 − b7b14) + b5(b3b14 + b4b12)

−b8(b2b12 + b3b10)
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f2 = b1(b7b15−b9b13)+b2(a4b15+b7b14−b8b13−b9b12)+b3(b5b15+b6b14−b8b11−b9b10)

+ b4(b5b13 + b6b12 − a4b11 − b7b10)

f3 = b2(b7b15 − b9b13) + b3(b6b15 − b9b11) + b4(b6b13 − b7b11)

In a similar manner we arrive at:

(D6 − d1D
4 + d2D

2 − d3){T̄ , ϕ̄} = 0 (26)

Eq. (25) can be factored as:

(D2 − k22)(D
2 − k23)(D

2 − k24)Φ̄ = 0 (27)

where, k2j (j = 2, 3, 4) are the roots of the characteristic equation of Eq. (25).
The solution of (21) bound as z → ∞, can be written as:

Ψ̄(z) = R1e
−k1z (28)

The solution of Eq. (27) bound as z → ∞, is given by:

Φ̄(z) =
4∑

j=2

Rje
−kjz (29)

Similarly, the solution of Eq. (26), can be written as:

T̄ (z), ϕ̄(z)} =
4∑

j=2

{S1j , S2j}Rje
−kjz (30)

where:

S1j =
b1b14k

4
j + (b4b10 − b1b15 − b2b14)k

2
j + b2b15 − b4b11

(b3b14 + b4b12)k2j − b3b15 − b4b13

S2j =
− b1b12k

4
j + (b3b10 + b1b13 + b2b12)k

2
j − b2b13 − b3b11

(b3b14 + b4b12)k2j − b3b15 − b4b13
j = 2, 3, 4

Substituting Eqs. (28), (29) and (30) into Eq. (20) we get:

Ψ(z) = R1e
(ω t+iax−k1z)

Φ(z), T (z), ϕ(z)} =

4∑
j=2

{1, S1j , S2j}Rje
(ω t+iax−kjz) (31)

Inserting Eq. (31) in Eq. (15), the displacement components u and w, bound as
z → ∞ are obtained as:

u = (
4∑

j=2

iaRje
−kjz − k1R1e

−k1z)e(ωt+iax) (32)

w = − (
4∑

j=2

kjRje
−kjz + iaR1e

−k1z)e(ωt+iax) (33)
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The stress components and the chemical potential are of the form:

σxx = {
4∑

j=2

[(1− 2δ2)(1 + α0ω)k
2
j − (1 + a0p+ δ0ω)a

2 − b3S1j + b4S2j ]Rje
−kjz

+ iak1[(1− 2δ2)(1 + α0ω)− (1 + a0p+ δ0ω)]R1e
−k1z}f(T ) e(ωt+iax) (34)

σzz = {
4∑

j=2

[(1 + a0p+ δ0ω)k
2
j − (1− 2δ2)(1 + α0ω)a

2 − b3S1j + b4S2j ]Rje
−kjz

+ iak1[(1 + a0p+ δ0ω)− (1− 2δ2)(1 + α0ω)]R1e
−k1z}f(T ) e(ωt+iax) (35)

σxz =
{
[δ2(1 + α1ω)(a

2 + k21) + a0pk
2
1]R1e

−k1z

− ia[2δ2(1 + α1ω) + a0p]
4∑

j=2

kjRje
−kjz

}
f(T ) e(ωt+iax) (36)

4. The boundary conditions

In order to determine the parameters Rj(j = 1, 2 , 3 , 4) we need to consider the
boundary condition at z = 0 as follows:
The mechanical boundary conditions:

σzz = −p1N(x, t), σxz = 0,
∂ϕ

∂z
= 0 (37)

The thermal boundary condition: the surface of the half-space is subjected to
a thermal shock:

T = p2N(x, t) (38)

where, p1 is the magnitude of the mechanical force, p2 is the constant of temperature
applied to the boundary, and N(x, t) is known function.
Substituting from the expressions of the variables considered into the boundary
conditions (37), (38) respectively, we can obtain the following equations:

h11R1 +
4∑

j=2

h1jRj = −p1 (39)

h21R1 +
4∑

j=2

h2jRj = 0 (40)

4∑
j=2

h3jRj = 0 (41)

4∑
j=2

S1jRj = p2 (42)
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where: h11 = iak1[(1 + a0p+ δ0ω)− (1− 2δ2)(1 + α0ω)]f(T )

h21 = [δ2(1 + α1ω)(a
2 + k21) + a0pk

2
1]f(T )

h1j = [(1 + a0p+ δ0ω)k
2
j − (1− 2δ2)(1 + α0ω)a

2 − b3S1j + b4S2j ]f(T )

h2j = −ia [2δ2(1 + α1ω) + a0p]kjf(T ) h3j = −kjS2j j = 2, 3, 4

Solving Eqs. (39)-(42) for Rj(j = 1, 2 , 3 , 4) by using the inverse of matrix method
as follows: 

R1

R2

R3

R4

 =


h11 h12 h13 h14

h21 h22 h23 h24

0 h32 h33 h34

0 S12 S13 S14


−1 

−p1
0
0
p2

 (43)

5. Numerical results and discussions

We will present some numerical results to illustrate the problem. The material
chosen for the purpose of numerical computation is copper, the physical data for
which are given by Ref. [33] in SI units:

λ = 7.76× 1010kgm−1 s−2 µ = 3.86× 1010kgm−1s−2 K = 386Wm−1K−1

T0 = 293K, ρ = 8954 kgm−3 αt = 1.78× 10−5K−1 Ce = 383.1 J kg−1K−1

The voids parameters are:

A = 1.688×10−5kgm s−2 b = 1.139×1010kgm−1s−2 m = 2×105kgm−1s−2K−1

χ = 1.75× 10−15m2 ξ1 = 1.475× 1010kgm−1s−2 ξ2 = 3.8402× 10−4kgm−1 s−3

τ = 0.2× 10−5kgm−1s−2K−1 ς = 0.1× 10−5kgm s−2

The comparisons were carried out for:

p1 = 0.8 p2 = 0.03 t = 0.4 x = 0.8 ω = 1.6+1.4i a = 1.2, 0 ≤ z ≤ 3 q = 1.4

p = 0.25 α0 = 3.25×10−2 α1 = 3.91×10−2 α2 = 6.51×10−2 α3 = 1.02×104

α4 = 1.95× 10−2

The above numerical technique was used for the distribution of the real parts of
the displacement components uand w, the temperature T , the stress components
σxx, σzz, σxz, σzx and the change in the volume fraction fieldϕ with distance z
for (G–N II) and (G–N III) with and without initial stress effect in the presence of
temperature-dependent properties which are shown graphically in the 2–D Figures
1–7. At p = 0 the solid lines represent the solution in the context of the (G–N
II) and the dashed line represents the solution for the (G–N III). In the case of
p = 0.25, the solid lines with squares represent the solution in the context of the
(G–N II) and the dashed line with circles represents the solution for the (G–N III).
Figures 8–14 clarify 2–D figures on the distribution of the physical quantities with
distance z for (G–N II) and (G–N III) with and without temperature-dependent
properties in the presence of initial stress.
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Figure 1 Variation of the displacement u ith horizontal distance zin the presence and absence of
initial stress
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Figure 2 Variation of the displacement w with horizontal distance zin the presence and absence
of initial stress
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Figure 3 Variation of the temperature T with horizontal distance z in the presence and absence
of initial stress
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Figure 4 Variation of the stress σxx with horizontal distance zin the presence and absence of
initial stress
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Figure 5 Variation of the stress σzz with horizontal distance zin the presence and absence of
initial stress
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Figure 6 Variation of the stress σxz with horizontal distance zin the presence and absence of
initial stress
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Figure 7 Variation of the volume fraction field ϕ with horizontal distance z in the presence and
absence of initial stress

At q = 1 the solid line represents the solution in the context of the (G–N II) and
the dashed line represents the solution for the (G–N III). In the case of q = 1.4, the
solid line with squares represents the solution in the context of the (G–N II) and
the dashed line with circles represents the solution for the (G–N III). Here all the
variables are taken in non–dimensional form. Fig. 1 depicts that the distribution
of the horizontal displacement component u, always begins from negative values for
p = 0, p = 0.25. In the context of (G–N II) the distribution of u at p = 0.25 is
higher than that at p = 0 in the range 0.53 < z < 0.95, while conversely in the other
ranges, and in the context of (G-N III) at p = 0.25, it is higher than that at p = 0
in the range 0.3 < z < 1.25 and conversely in the other ranges. Fig. 2 shows the
distribution of the displacement component w in the case of p = 0, p = 0.25. In the
context of (G–N II (the distribution of w at p = 0.25 is larger than that at p = 0 in
the range 0.4 < z < 1.6, then, conversely in the other ranges. But in the context of
(G-N III) at p = 0.25 it is larger than that at p = 0 in the range 0.55 < z < 2.5, and
conversely in the other ranges. Fig. 3 explains that the distribution of temperature
Tbegins from a positive value in the case of p = 0, p = 0.25. In the context of
(G–N II) the distribution of T at p = 0 is higher than that at p = 0.25 in the range
0 < z < 0.6, but conversely in the range z > 0.6, while in the context of (G–N III)
at p = 0 it is higher than that at p = 0.25 in the range 0 < z < 1.1, and conversely
in the range z > 1.1. Fig.e 4 expresses the distribution of the stress component
σxxin the case of p = 0, p = 0.25. In the context of (G–N II) the distribution of σxx

at p = 0 is larger than that at p = 0.25 for z > 0, while in the context of (G–N III)
at p = 0.25 it is larger than that at p = 0 in the range 0 < z < 1.35, but conversely
in the range z > 1.35. Figure 5 expresses the distribution of the stress component
σzz in the case of p = 0, p = 0.25. In the context of (G–N II) the distribution of σzz

at p = 0 is higher than that at p = 0.25 in the range 0 < z < 2.4, and conversely in
the range z > 2.4. However, in the context of (G-N III) at p = 0.25 it is higher than
it at p = 0 in the range 0 < z < 0.48, then conversely in the range z > 0.48. Fig. 6
expresses the distribution of the stress component σxz in the case of p = 0, p = 0.25.
In the context of (G–N II) the distribution of σxz at p = 0 is greater than that at
p = 0.25 in the range 0.45 < z < 1, and conversely in the other ranges, while in
the context of (G-N III) at p = 0 is greater than that at p = 0.25 in the range
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0.35 < z < 1.3, and conversely in the other ranges. Fig. 7 depicts the distribution
of the change in the volume fraction field ϕ for p = 0, p = 0.25. In the context
of (G-N II) and (G-N III) the distribution of ϕ at p = 0.25 is larger than that at
p = 0 for z > 0. It explains that all the curves converge to zero, and the initial
stress is significant on the distributions of all physical functions. Fig. 8 depicts that
the distribution of the horizontal displacement component u, always begins from
negative values for q = 1, 1.4. In the context of (G-N II) the distribution of u at
q = 1.4 is higher than that at q = 1 for z > 0, and in the context of (G-N III) at
q = 1 it is higher than that at q = 1.4 in the range 0.4 < z < 1.2,, then conversely
in the other ranges. Fig. 9 shows the distribution of the displacement component w
in the case of q = 1, 1.4. In the context of (G–N II) the distribution of wat q = 1 is
greater than that at q = 1.4 in the range 0.4 < z < 1.9, and conversely in the other
ranges, but in the context of (G-N III) at q = 1 it is greater than that at q = 1.4 in
the range 0.6 < z < 2.4, then conversely in the other ranges.
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Figure 8 Variation of the displacement uwith horizontal distance z in the presence and absence
of temperature–dependent properties
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Fig. 10 explains the distribution of temperature T begins from a positive value in
the case of q = 1, 1.4. In the context of (G-N II) the distribution of Tat q = 1.4 is
higher than that at q = 1 in the range 0 < z < 0.75, and conversely in the range
z > 0.75, while in the context of (G-N III) at q = 1.4 it is higher than that at q = 1
in the range 0 < z < 1.25, then conversely in the range z > 1.25. Fig. 11 expresses
the distribution of the stress component σxx in the case of q = 1, 1.4. In the context
of (G-N II) the distribution of σxx at q = 1.4 is larger than that at q = 1 for z > 0,
but in the context of (G-N III) at q = 1 it is larger than that at q = 1.4 in the range
0.2 < z < 0.7, and conversely in the range z > 0.7.
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Figure 10 Variation of the temperature Twith horizontal distance zin the presence and absence
of temperature–dependent properties
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Figure 11 Variation of the stress σxxwith horizontal distance zin the presence and absence of
temperature–dependent properties
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Fig. 12 expresses the distribution of the stress component σzz in the case of q =
1, 1.4. In the context of (G–N II) the distribution of σzz at q = 1.4 is larger than
that at q = 1 for z > 0, while in the context of (G–N III) at q = 1.4 it is larger than
that at q = 1 in the range 0 < z < 0.4, and conversely in the range z > 0.4. Figure
13 expresses the distribution of the stress component σxz in the case of q = 1, 1.4.
In the context of (G–N II) the distribution of σxz at q = 1 is greater than that at
q = 1.4 for z > 0, but in the context of (G–N III) at q = 1.4 it is greater than that
at q = 1 in the range 0 < z < 1.4 and conversely in the range z > 1.4. Fig. 14
depicts the distribution of the change in the volume fraction field ϕ for q = 1, 1.4.
In the context of (G-N II) the distribution of ϕ at q = 1.4 is higher than that
at q = 1 for z > 0, while in the context of (G–N III) at q = 1 it is higher than
that at q = 1.4 for z > 0. It explains that all the curves converge to zero, and the
temperature–dependent properties is significant of the distributions of all physical
functions.
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Figure 12 Variation of the stress σzzwith horizontal distance zin the presence and absence of
temperature-dependent properties
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Figure 13 Variation of stress σxzwith horizontal distance zin the presence and absence of
temperature–dependent properties
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Figure 14 Variation of the volume fraction field ϕ with horizontal distance z in the presence and
absence of temperature–dependent properties

6. Conclusions

According to the above analysis, we can conclude that the reference temperature–
dependent modulus play an important role on all the physical quantities. The
presence and absence of the initial stress in the current model has a significant ef-
fect. The normal mode analysis has been used which is applicable to a wide range of
problems in thermoviscoelasticity. This method gives exact solutions without any
assumed restrictions on the actual physical quantities that appear in the governing
equations of the physical problem considered. The value of all physical quantities
converges to zero with the increase of distance and all of them are continuous. It
noticed that the thermoviscoelastic materials with voids have an important role in
the distribution of the field quantities, since the amplitudes of these quantities is
varying (increasing or decreasing) with the changes of the initial stress and the ref-
erence temperature–dependent modulus. Finally, it deduced that the deformation
of a body depends on the nature of the applied forces and the initial stress effect as
well as the type of boundary conditions.
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