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Mathematical modeling of axisymmetric waves in a piezoelectric fiber of circular cross
section coated with thin film is studied using three-dimensional theory of piezoelectric-
ity. Potential functions are introduced to uncouple the equations of motion, electric
conduction equations. The surface area of the fiber is coated by a perfectly conducting
gold material. The frequency equations are obtained for longitudinal and flexural modes
of vibration and are studied numerically for PZT-4 ceramic fiber. The computed non-
dimensional frequencies and attenuation for fiber with and without coating are presented
in the form of dispersion curves.
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1. Introduction

Piezoelectric fiber with thin film coating plays vital role in many structural compo-
nents, as a moisture barrier in the case of a packaging foil, a reflective layer for a car
light reflector, an anti-reflection layer, a complex filter stack for optical components,
highly reflective enhanced and protected layers for astronomical mirrors, or a heat
insulation layer stack for architectural glazing applications. This type of Ceramic
fiber obtained from the combination of lead zirconate/lead titanate reveals greater
sensitivity and operating temperatures compare with other compositions and the
materials PZT-4 are most widely used piezoelectric ceramics.
Mindlin [1, 2] developed the thermo-piezoelectric theory to derive the governing
equations for a thermo-piezoelectric plate. The physical laws for the thermo-
piezoelectric materials have been explored by Nowacki [3] (Foundations of linear
piezoelectricity). Chandrasekharaiah [4, 5] has generalized Mindlin’s theory of
thermo-piezoelectricity for the finite speed of propagation of thermal disturbances.
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Researchers (Pal [6], Paul and Ranganathan [7]) have respectively studied the sur-
face waves in a thermo-piezo-electric medium of monoclinic symmetry and free
vibrations of a pyroelectric layer of hexagonal (6 mm) class. Yang and Batra [8]
analyzed the free vibrations of a thermo-piezoelectric body. Sharma and Kumar
[9] disussed the plane harmonic waves in piezo-thermoelastic materials. The wave
propagation in elastic solid has been discussed extensively in details by Graff [10]
and Achenbach [11].
Sinha et al [12] have studied the axisymmetric wave propagation in circular cylindri-
cal shell immersed in a fluid, in two parts. In Part I, the theoretical analysis of the
propagation modes is discussed and in Part II, the axisymmetric modes excluding
tensional modes are obtained theoretically and experimentally and are compared.
Berliner and Solecki [13] have studied the wave propagation in a fluid loaded trans-
versely isotropic cylinder. In that paper, Part I consists of the analytical formulation
of the frequency equation of the coupled system consisting of the cylinder with inner
and outer fluid and Part II gives the numerical results.
Ponnusamy and Selvamani [14, 15] have studied the wave propagation in magneto
thermo elastic cylindrical panel and wave propagation in a transversely isotropic
magneto-electro-elastic solid bar immersed in an inviscid fluid respectively, using
Bessel function. Dayal [16] investigated the free vibrations of a fluid loaded trans-
versely isotropic rod based on uncoupling the radial and axial wave equations by
introducing scalar and vector potentials. Nagy [17] studied the propagation of
longitudinal guided waves in fluid-loaded transversely isotropic rod based on the
superposition of partial waves. Guided waves in a transversely isotropic cylinder
immersed in a fluid was analyzed by Ahmad [18]. Selvamani [19, 20] has studied,
the dispersion analysis in a fluid filled and immersed transversely isotropic thermo-
electro-elastic hollow cylinder and Influence of thermo-piezoelectric field in a circu-
lar bar subjected to thermal loading due to laser pulse using the Bessel function in
frequency equation.

2. Model of the problem

A homogeneous transversely isotropic piezoelectric circular fiber of infinite length
coated by thin film is considered for this problem. The equations of motion and the
piezoelectric, and dielectric matrices of the 6 mm crystal class is given as:

σrr,r + σrz,z + r−1σrr = ρur,tt

σrz,r + σzz,z + r−1σrz = ρuz,tt (1)

1

r

∂

∂r
(rDr) +

∂Dz

∂r
= 0 (2)

σrr = c11err + c12eθθ + c13ezz − e31

Ezσrr = c11err + c12eθθ + c13ezz − e31Ez

σzz = c13err + c13eθθ + c33ezz − e33Ez

σrz = 2c44erz − e15Er (3)

Dr = e15erz + ε11Er
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Dz = e31 (err + eθθ) + e33ezz + ε33Ez (4)

where: σrr, σθθ, σzz, σrθ, σθz, σrz are the stress components, err, eθθ, ezz, erθ, eθz,
erz are the strain components, c11, c12, c13, c33, c44 and c66 = (c11 − c12) /2 are the
five elastic constants, e31, e15, e33 are the piezoelectric constants, ε11, ε33 are the
dielectric constants, ρ is the mass density. The comma in the subscripts denotes
the partial differentiation with respect to the variables.
The strain eij are related to the displacements are given by:

err = ur,r eθθ = r−1 (ur + uθ,θ) ezz = uz,z

(5)

erθ = uθ,r + r−1 (ur,θ − uθ) ezθ =
(
uθ,z + r−1uz,θ

)
erz = uz,r + ur,z

The comma in the subscripts denotes the partial differentiation with respect to the
variables.
Substituting the Eqs. (3), (4) and (5) in the Eqs. (1) and (2), results in the following
three-dimensional equations of motion, electric conductions are obtained as follows:

c11
(
urr,r + r−1ur,r − r−2ur

)
+ c44ur,zz + (c44 + c13)uz,rz + (e31 + e15)V,rz

= ρur,tt

c44
(
uz,rr + r−1uz,r

)
+ r−1 (c44 + c13) (ur,z) + (c44 + c13)ur,rz + c33uz,zz

+e33V,zz + e15
(
V,rr + r−1V,r

)
= ρuz,tt (6)

e15
(
uz,rr + r−1uz,r

)
+ (e31 + e15)

(
ur,zr + r−1ur,z

)
+ e33uz,zz − ε33V,zz

−ε11
(
V,rr + r−1V,r

)
= 0

3. Solution of the model

To obtain the propagation of harmonic waves in piezoelectric circular fiber, we
assume the solutions of the displacement components to be expressed in terms of
derivatives of potentials are taken from Paul [21]:

ur (r, z, t) = (ϕ,r) e
i(kz+ωt)

uz (r, z, t) =

(
i

a

)
Wei(kz+ωt)

V (r, z, t) = iV ei(kz+ωt)

Er (r, z, t) = −E,re
i(kz+ωt)

Ez (r, z, t) = E,ze
i(kz+ωt) (7)

wherei =
√
−1, k is the wave number, ωis the angular frequency, ϕ (r) , W (r),

ψ (r) and E (r)are the displacement potentials and V (r) is the electric potentials
and a is the geometrical parameter of the bar. By introducing the dimensionless
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quantities such as x = r/a, ζ = ka, Ω2 = ρω2a2
/
c44, c̄11 = c11/c44, c̄13 = c13/c44,

c33 = c33/c44, c66 = c66/c44 and substituting Eq. (7) in Eq. (6), we obtain:(
c11∇2 +

(
Ω2 − ζ2

))
ϕ− ζ (1 + c13)W − ζ (e31 + e15)V = 0

ζ (1 + c13)∇2ϕ+
(
∇2 +

(
Ω2 − ζ2c33

))
W +

(
e15∇2 − ζ2

)
V = 0 (8)

ζ (e31 + e15)∇2ϕ+
(
e15∇2 − ζ2

)
W +

(
ζ2ε33 − ε11∇2

)
V = 0

and (
c66∇2 +

(
Ω2 − ζ2

))
ψ = 0 (9)

where: ∇2 = ∂2

∂x2 + x−1 ∂
∂x + x−2 ∂2

∂θ2

The Eq. (8) can be written as:∣∣∣∣∣∣
(
c11∇2 +

(
Ω2 − ζ2

))
−ζ (1 + c13) −ζ (e31 + e15)

ζ (1 + c13)∇2
(
∇2 +

(
Ω2 − ζ2c33

)) (
e15∇2 − ζ2

)
ζ (e31 + e15)∇2

(
e15∇2 − ζ2

) (
ζ2ε33 − ε11∇2

)
∣∣∣∣∣∣ (ϕ,W, V ) = 0

(10)
Evaluating the determinant given in Eq. (10), we obtain a partial differential equa-
tion of the form: (

P∇6 +Q∇4 +R∇2 + S
)
(ϕ,W, V ) = 0 (11)

where:

P = c11
(
e215 + ε11

)
Q =

[
(1 + c11) ε11 + e215

]
Ω2 +

{
2 (e31 + e15) c13e15 − (1 + ε11c33) c11
+c213ε11 + 2c13ε11 − 2e15c11 + 2e213

}
ς2

R = ε11Ω
4 − [(1 + c13) ε11 + (1 + c11) + (e31 + e15) + 2e15] ς

2Ω2 + {c11 (1 + c33ε33)

−
[
(e31 + e15)

2
+ ε11

]
− 2e31 (1 + c13)− c13ε33 (c33 + c13) + 2e15}ς4

S = −
{
(1 + c33) ς

6 − [2 (1 + c33) ε33 + 1] ς4Ω2 + ε33ς
2Ω4

}
Solving the Eq. (11), we get solutions for a circular fiber as:

ϕ =

3∑
i=1

AiJn (αiax) cosnθ

W =
3∑

i=1

aiAiJn (αiax) cosnθ

V =

3∑
i=1

biAiJn (αiax) cosnθ (12)

Here (αia)
2
> 0, (i = 1, 2, 3)are the roots of the algebraic equation:

A (αa)
6 −B (αa)

4
+ C (αa)

2
+D = 0 (13)
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The Bessel function Jn is used when the roots (αia)
2
, (i = 1, 2, 3)are real or complex

and the modified Bessel function Inis used when the roots (αia)
2
, (i = 1, 2, 3)are

imaginary.
The constants ai, bi defined in the Eq. (12) can be calculated from the equations:

(1 + c13) ςai + (e31 + e15) ςbi = −
(
c11 (αia)

2 − Ω2 + ς2
)

(
(αia)

2 − Ω2 + ς2c33

)
ai +

(
e15 (αia)

2
+ ς2

)
bi = − (c13 + 1) ς (αia)

2
(14)

Solving the Eq. (9), we obtain:

ψ = A4nJn (α4ax) sinnθ (15)

where(α4a)
2
= Ω2 − ζ2. If(α4a)

2
< 0, the Bessel function Jn is replaced by the

modified Bessel functionIn.

4. Boundary conditions and Frequency equations

In this problem, the free axisymmetric vibration of transversely isotropic piezo-
electric fiber of circular cross-section coated with thin film is considered. For the
solid-fluid problems, the continuity conditions require that the displacement com-
ponents, the surface stress components and electric potential must be equal. The
boundary conditions can be written as

σrj = −δj b 2µ
′
h

′

[(
3λ

′
+ 2µ

′

λ′ + 2µ′

)
Ua,ab + Ub,aa

]
+ 2 h

′
ρ

′
Üj (16)

V = 0

where: λ
′
, µ

′
, ρ

′
and h

′
are Lame’s constants, density, thickness of the material

coating, respectively, δj b is the Kronecker delta function with a, b takes the value
of θ, z and j takes r, θ and z. In order to get the axisymmetric waves a, b can ta
es only z. Then the transformed boundary conditions is as follows:

σrr = 2h
′
ρ

′
Ü

σrz = −2h
′
µ

′
G2W,zz + 2h

′
ρ

′
Ẅ

V = 0 at r = a (17)

where: G2 =
1+C

′
12

C
′
11

Substituting the solutions given in the Eqs. (12), (15) in the boundary condition
Eq. (17), we obtain a system of linear algebraic equations as follows:

[B] {X} = {0} (18)

where [B] is a 5×5 matrix of unknown wave amplitudes, and {X} is an 5×1 column
vector of the unknown amplitude coefficients B1, B2, B3, B4, B5. The solution of
Eq. (18) is nontrivial when the determinant of the coefficient of the wave amplitudes
{X} vanishes, that is:

|B| = 0 (19)
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The components of [B] are obtained as:

B1i = 2c66

{
n (n− 1)− c11 (αia)

2 − ς (c13ai + e31bi)
}
Jn (αia)

+2c66 (αia)Jn+1 (αia) i = 1, 2

B13 = 2c66n {(n− 1) Jn (α4a)− (α4a)Jn+1 (α4a)}

B14 = 2 (α1a)
[(
ρ

′
h

′
/
aρ (Ca)

2 − C66

)]
Jn (α5a)

B2i = 2n {(n− 1) Jn (αia) + (αia) Jn+1 (αia)} i = 1, 2

B23 =
{[

(α4a)
2 − 2n (n− 1)

]
Jn (α4a)− 2 (α4a) Jn+1 (α4a)

}
B24 = 2 (α1a)

[(
ρ

′
h

′
/
aρ (Ca)

2 − C66

)]
Jn (α5a)

B3i = ((ς + ai) + e15bi) {nJn (αia)− (αia)Jn+1 (αia)} , i = 1, 2

B33 = nςJn (α4a) B34 = 0

5. Numerical results and discussion

The frequency equation given in Eq. (19) is transcendental in nature with unknown
frequency and wave number. The solutions of the frequency equation are obtained
numerically by fixing the wave number. The material chosen for the numerical
calculation is PZT-4 ceramics coated with gold material. The material properties
of PZT-4 and Gold is taken from Berlincourt et al [22]:

c11 = 13.9× 1010Nm−2, c12 = 7.78× 1010Nm−2, c13 = 7.43× 1010Nm−2

c33 = 11.5× 1010Nm−2, c44 = 2.56× 1010Nm−2, c66 = 3.06× 1010Nm−2

e31 = −5.2Cm−2, e33 = 15.1Cm−2, e15 = 12.7Cm−2

ε11 = 6.46× 10−9C2N−1m−2, ε33 = 5.62× 10−9C2N−1m−2, ρ = 7500Kgm−2

In this problem, by choosing n = 0 and n = 1, we can obtain the non-dimensional
frequencies of two kinds of basic independent modes, namely, longitudinal and flex-
ural modes of vibrations.

5.1. Dispersion curves

The results of non dimensional frequency and attenuation for longitudinal and flex-
ural modes are plotted in the form of dispersion curves. The notation used in the
figures, namely Lm, Fsm, and FAsm respectively denote the longitudinal mode,
flexural symmetric mode and flexural anti symmetric mode. The 1 refers the first
mode, 2 refers the second mode and so on.
The dispersion curves are drawn for non-dimensional frequency Ω versus the di-
mensionless wave number |ς| for longitudinal modes of piezoelectric circular fiber
with and without thin film coating, respectively shown in Figs. 1 and 2. From the
Figs. 1 and 2, it is observed that the non-dimensional frequencies are increased with
respect to its wave number. A comparison is made between the non-dimensional
frequency Ω versus the dimensionless wave number |ς| for flexural modes of vibra-
tion is respectively shown in the Figs. 3 and 4, for the fiber with and without
coating. From the Figs. 3 and 4, it is observed that, the third and fourth modes
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of frequency are merges for a particular period after that, it starts increases. The
cross-over points between the flexural modes of frequency show that, there is energy
transfer between the modes of vibrations due to the impact of coating. A dispersion
curve is drawn to compare the frequency responses of flexural anti symmetric modes
of vibration for a piezoelectrical cylindrical fiber with coating and without coating
is shown respectively in the Figs. 5 and 6. From the Figs. 5 and 6, it is noticed
that the dimensionless frequencies are increases with respect to its non-dimensional
wave numbers. In this analysis it is observed that the frequency of the fiber with
coating is deviated from that of the uncoated fiber.

Figs. 7-12 represents the variation of attenuation for the real and imaginary part of
longitudinal, flexural symmetric and flexural anti symmetric modes with respect to
thickness of the fiber. Whenever the thickness of the fiber increases the attenuation
is oscillating both in real and imaginary part of all the three fundamental modes of
vibration.

Figure 1 Non-dimensional wave number |ς | versus Non-dimensional frequency Ω of longitudinal
modes of vibration for a piezoelectric cylindrical fiber with coating

Figure 2 Non-dimensional wave number |ς | versus Non-dimensional frequency Ω of longitudinal
modes of vibration for a piezoelectric cylindrical fiber without coating
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Figure 3 Non-dimensional wave number |ς | versus Non-dimensional frequency Ω of flexural
symmetric modes of vibration for a piezoelectric cylindrical fiber with coating

Figure 4 Non-dimensional wave number |ς | versus Non-dimensional frequency Ω of flexural
symmetric modes of vibration for a piezoelectric cylindrical fiber without coating

Figure 5 Non-dimensional wave number |ς | versus Non-dimensional frequency Ω of flexural
antisymmetric modes of vibration for a piezoelectric cylindrical fiber with coating
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Figure 6 Non-dimensional wave number |ς | versus Non-dimensional frequency Ω of flexural
antisymmetric modes of vibration for a piezoelectric cylindrical fiber without coating

Figure 7 Variation of Attenuation versus thickness of the coating material h
′
for real part longi-

tudinal mode

Figure 8 Variation of Attenuation versus thickness of the coating material h
′
for imaginary part

of longitudinal mode
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Figure 9 Variation of Attenuation versus thickness of the coating material h
′
for real part of

flexural anti symmetric mode

Figure 10 Variation of Attenuation versus thickness of the coating material h
′
for imaginary part

of flexural anti symmetric mode

Figure 11 Variation of Attenuation versus thickness of the coating material h
′
for real part of

flexural symmetric mode
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Figure 12 Variation of Attenuation versus thickness of the coating material h
′
for imaginary part

of flexural symmetric mode

6. Conclusions

The axisymmetric wave propagation in a piezoelectric circular fiber coated with
thin film is discussed using three-dimensional theory of piezoelectricity. Three dis-
placement potential functions are introduced to uncouple the equations of motion,
electric conduction. The frequency equations are obtained for longitudinal and fle-
xural modes of vibration and are studied numerically for PZT-4 material fiber with
gold coating. The computed non-dimensional frequency and attenuation are pre-
sented in the form of dispersion curves. From the graphical pattern, it is observed
that the frequency of the fiber with coating is deviated from that of the uncoated
fiber and also the attenuation is oscillating with increasing thickness of the coated
material.
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