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This article studies the effect of the gravity field and the diffusion on micropolar ther-
moelastic medium with dependence on the temperature properties. The analytic method
used to obtain the exact formula of the physical quantities was the normal mode analysis.
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1. Introduction

The generalized thermoelasticity theories have been developed with the objective
of removing the paradox of infinite speed of heat propagation inherent in the con-
ventional coupled dynamical theory of thermoelasticity in which the parabolic type
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heat conduction equation is based on Fourier’s law of heat conduction which intro-
duced by Biot [1]. There are two important generalized theories of thermoelasticity.
The first is due to Lord and Shulman [2] who developed the theory with one re-
laxation time. The second generalization to the coupled theory of thermoelasticity
is known as the theory of thermoelasticity with two relaxation times or the theory
of temperature-rate-dependent thermoelasticity introduced by Green and Lindsay
(G-L) who’s obtained another version of the constitutive equations [3]. The classical
Fourier law violated if the medium under consideration has a center of symmetry.
Green and Naghdi [4-6] proposed three new thermoelastic theories based on entropy
equality than the usual entropy inequality. The constitutive assumption for the heat
flux vector is different in each theory. Thus, they obtained three theories which are
called thermoelasticity of type I, thermoelasticity of type II and thermoelasticity of
type III. When type I theory is linearized we obtain the classical system of thermoe-
lasticity. The type II theory (is a limiting case of type III) does not admit energy
dissipation.

The response of the material to the external stimuli depends heavily on the motions
of its inner structures. Classical elasticity does not contain this effect, where only
translational degrees of freedom of the material point of the body are considered.
Eringen [7] developed the linear micropolar theory of elasticity, which included the
intrinsic rotations of the microstructure. It provides a model that can support the
body and the surface couples and display high frequency optical branch of the wave
spectrum. For the engineering applications, this theory establishes the composites
with rigid chopped fibers, elastic solid with rigid granular inclusions, and other
industrial materials such as liquid crystals. Smith [8] studied the wave propagation
in micropolar elastic solids. Parfitt and Eringen [9] investigated the reflection of the
plane waves from a flat boundary of a micropolar elastic half-space. Ariman [10]
also studied the wave propagation in micro-polar elastic half-space solid. Eringen
[11] presented the microcontinuum field theory. Othman et al. [12-14] investigated
some problems for micropolar thermoelasticity.

The diffusion can be defined as the random walk, of an ensemble of particles, from
regions of high concentration to regions of lower concentration. There is now a great
deal of interest in the study of this phenomenon, due to its many applications in
geophysics and industrial applications. In integrated circuit fabrication, diffusion is
used to introduce the pants in controlled amounts into the semiconductor substrate.
In particular, diffusion is used to form the base and emitter in bipolar transistors,
form integrated resistors. In most of these applications, the concentration is cal-
culated using what is known as Flick’s law. This is a simple law that does not
take into consideration the mutual interaction between the introduced substance
and the medium into which it is introduced or the effect of the temperature on this
interaction. Nowacki [15-18] established the theory of thermo-elastic diffusion. In
this theory, the coupled thermoelastic model is used.

The effect of the gravity on the wave propagation in an elastic medium was first
considered by Bromwich [19], which treating the force of the gravity as a type of
a body force. Love [20] extended the work of Bromwich investigated the influence
of the gravity on superficial waves and showed that the Rayleigh wave velocity is
affected by the gravitational field. Sezawa [21] studied the dispersion of elastic
waves propagated on curved surfaces.
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Othman et al. [22, 23] discussed two problems on the effect of the gravitational
field on thermoelastic solids.
Most of the studies in applied sciences of mechanics of materials were done under
the assumption of the temperature-independent material properties, which limit the
applicability of the obtained solutions to certain ranges of temperature. At high
temperature, the material characteristics such as the modulus of elasticity, Pois-
son’s ratio, the coefficient of thermal expansion and the thermal conductivity are
no longer constants. In recent years due to the progress in various fields in science
and technology the necessity of taking into consideration the real behavior of the
material characteristics became actual. Othman et al. [24] discussed the effect of
the gravitational field and temperature-dependent properties on two-temperature
thermoelastic medium with voids under G–N theory. Recently, Othman and Hilal
[25] established the rotation effect on two-temperature porous thermoelastic mate-
rial and temperature-dependent properties of type III. Elmaklizi and Othman [26]
studied the effect of rotation on thermoelastic diffusion with temperature-dependent
elastic moduli comparison of different theories. Othman and Elmaklizi [27] discussed
the 2-D problem of generalized magneto-thermo-elastic diffusion with temperature-
dependent elastic moduli.

This paper studies the effect of diffusion on a linear, isotropic, homogeneous mi-
cropolar thermoelastic solid influenced by the gravitational field with temperature-
dependent properties based on (G-N) theory. The analytic methodology used to
get the exact solutions of the considered physical quantities was the normal mode
analysis. The obtained physical quantities represented graphically in the absence
and presence of the physical effects.

2. Basic equations

Consider an isotropic, homogeneous, linear thermoelastic diffusive micropolar medium
Following Sherief et al. [13], Green and Naghdi [20] and Aouadi [27], the field equa-
tions and the constitutive relations without body forces, body couples and heat
sources can be considered in the form:

σij, i = ρ ui, tt (1)

mij, i + εijr σir = jρ ϕi, tt (2)

d β2 e, ii + d a∗ T, ii + d bC, ii + C,t = 0 (3)

K T, ii +K∗ T, iit − a∗ T0 C,tt = ρCe T, tt + β1 T0 ui, i tt (4)

σij = λur,r δij + µ (ui,j + uj,i) + k∗ (uj,i − εijr ϕr)− β1 T δij − β2 C δij (5)

mij = αϕr,r δij + β ϕi,j + γ ϕj,i (6)

ρ T0 S = ρCe T + β1 T0 ekk + a∗ T0 C (7)

P = −β2 ekk + bC − a∗ T (8)

eij =
1

2
(ui,j + uj,i) (9)

where: λ, µ are the Lame’ constants, α, β, γ and k∗ are the micropolar constants,
β1 = (3λ+ 2µ+ k∗)αt,while αt is the linear thermal expansion coefficient,ρ is the
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density, β2 = (3λ+2µ+k∗)αc, while αc is the linear diffusion expansion coefficient,
Ce is the specific heat at constant strain, K is the thermal conductivity, K∗ is the
material constant characteristic for this theory, ui is the displacement vector, θ
is the absolute temperature, where, T = θ − T0, T0 is the reference temperature
chosen so that |(T − T0)/T0| << 1, ϕi is the microrotation vector, σij are the
components of the stresses, eij are the components of strains, δij is the Kronecker
delta, εijris the permutation symbol, ekk is the cubic dilation, p is the chemical
potential, mij is the couple stresses, j is the microinertia, S is the entropy per unit
mass, a∗ is a measure of the thermo-diffusive effect, d is the diffusion coefficient, b
is the measure of diffusion effect, C is the concentration of the diffusive material in
the elastic body.

3. Formulation of the problem and solution

Consider an isotropic, linear, homogeneous, micropolar thermoelastic medium with
a half-space (y ≥ 0), under the effect of a constant gravitational field g with
temperature- dependent properties. The rectangular Cartesian coordinate system
(x, y, z) having originated on the surface z = 0. For two dimensional problem as-
sume the dynamic displacement vector as u = (u, v, 0). The microrotation vector
ϕ will be ϕ = (0, 0, ϕ3). All quantities considered will be a function of the time
variable t and of the coordinates x and y , in the used equations a dot denotes
differentiation with respect to time, while a comma denotes the coordinate system
derivatives. Eqs. (1)-(4) under the effect of the gravitational field will be on the
form:

(µ+ k∗)∇2 u+ (λ+ µ)
∂ e

∂ x
+ k∗

∂ ϕ3
∂ y

− β1
∂ T

∂ x
− β2

∂ C

∂ x
+ ρ g

∂ v

∂ x
= ρ

∂2 u

∂ t2
(10)

(µ+ k∗)∇2 v + (λ+ µ)
∂ e

∂ y
− k∗

∂ ϕ3
∂ x

− β1
∂ T

∂ y
− β2

∂ C

∂ y
− ρ g

∂ u

∂ x
= ρ

∂2 v

∂ t2
(11)

γ∇2 ϕ3 − 2 k∗ϕ3 + k∗(
∂ v

∂ x
− ∂ u

∂ y
) = jρ

∂2 ϕ3
∂ t2

(12)

d β2 ∇2 e+ d a∗ ∇2 T + d b∇2C +
∂ C

∂ t
= 0 (13)

K∇2 T +K∗ ∂

∂ t
∇2 T − a∗ T0

∂2 C

∂ t2
= ρ Ce

∂2 T

∂ t2
+ β1 T0

∂2 e

∂ t2
(14)

To investigate the effect of the temperature dependence properties on the micropolar
thermoelastic medium assume that:

λ = λ0 f(T ) µ = µ0 f(T ) β1 = β10 f(T ) β2 = β20 f(T )

(15)

α = α0 f(T ) β = β0 f(T ) γ = γ0 f(T ) k∗ = k∗0 f(T )

where: λ0, µ0, β10, β20, α0, β0, γ0, k
∗
0 are constants, f(T )is a given non-dimensional

function of temperature. In the case of a temperature independent modulus of
elasticity, f(T ) = 1, such that f(T ) = (1− α∗T0), where α

∗ is called the empirical
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material constant, in the case of the reference temperature independent of modulus
of elasticity and thermal conductivity α∗ = 0. In Eq. (14) K∗ = 0; this system
converted into (G–N II) theory without energy dissipation.
Define the non-dimensional variables by expressions:

x
′

i =
ω∗
1

c1
xi u

′

i =
ρ c1 ω

∗
1

β10 T0
ui ϕ

′

3 =
ρ c21
β10 T0

ϕ3 m
′

ij =
ω∗
1

β10 c1 T0
mij

t
′
= ω∗

1 t g
′
=

g

c1 ω∗
1

C ′ =
β20
β10 T0

C

(T
′
p

′

2) =
1

T0
(T, p2) (σ

′

ijp
′

1) =
1

β10 T0
(σij , p1) (16)

P ′ =
1

β20
P ω∗

1 =
ρCe c

2
1

K
c21 =

λ0 + 2µ0 + k∗0
ρ

Assuming the potential functions ψ1(x, y, t), ψ2(x, y, t), on the dimensionless form:

u =
∂ ψ1

∂ x
+
∂ ψ2

∂ y
and v =

∂ ψ1

∂ y
− ∂ ψ2

∂ x
(17)

To get the solution for the physical quantities, consider the solution in the form of
the normal mode:

[ψ1, ψ2, ϕ3, C, T ] (x, y, t) = [ψ∗
1 , ψ

∗
2 , ϕ

∗
3, C

∗, T ∗] (y) ei (a x−ξ t) (18)

Where, [ψ∗
1 , ψ

∗
2 , ϕ

∗
3, C

∗, T ∗] (y) are the amplitude of the physical quantities, ξ is the
angular frequency, i =

√
−1 and a is the wave number in the x− direction.

Apply Eqs. (15–18) into Eqs. (10–14) and drop the prime to obtain

[D2 −m2] ψ
∗
1 −m3 ψ

∗
2 −m4 C

∗ −m4 T
∗ = 0 (19)

m5 ψ
∗
1 + [D2 −m6] ψ

∗
2 + l2 ϕ

∗
3 = 0 (20)

− l6 [D
2 − a2] ψ∗

2 + [D2 −m7] ϕ
∗
3 = 0 (21)

l8 [(D2 − a2) (D2 − a2)] ψ∗
1 + [D2 −m8] C

∗ + l10 [D2 −m8] T
∗ = 0 (22)

m10 [D
2 − a2] ψ∗

1 −m11 C
∗ + [D2 −m12] T

∗ = 0 (23)

All the constants are in Appendix B.
Eliminate ψ∗

1 , ψ
∗
2 , ϕ

∗
3, C

∗ and T ∗ between Eqs. (19–23), to obtain the following
differential equation:

[D10−δ1 D8+δ2 D
6−δ3 D4+δ4 D

2−δ5]{ψ∗
1(y), ψ

∗
2(y), ϕ

∗
3(y), C

∗(y), T ∗(y)} = 0 (24)

where: δn (n = 1, 2, ..., 5) can be obtained from elimination the functions among
Eqs. (19–23).
Equation (24) can be factored as:

[(D2 − k21)(D
2 − k22)(D

2 − k23) (D
2 − k24)(D

2 − k25)]

(25)

{ψ∗
1(y), ψ

∗
2(y), ϕ

∗
3(y), C

∗(y), T ∗(y)} = 0
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where: k2n (n = 1, 2, ..., 5) are the roots of the characteristic equation of the Eq. (25).
The general solution of the equation (25), bound at y → ∞, given by:

ψ1 (x, y, t) =
5∑

n=1

Rn e
−kn y+i (a x− ξ t) (26)

ψ2 (x, y, t) =
5∑

n=1

B1nRn e
−kn y+i (a x− ξ t) (27)

u (x, y, t) =
5∑

n=1

A1nRn e
−kn y+i (a x− ξ t) (28)

v (x, y, t) =
5∑

n=1

A2nRn e
−kn y+i (a x− ξ t) (29)

ϕ3 (x, y, t) =
5∑

n=1

B2nRn e
−kn y+i (a x− ξ t) (30)

C (x, y, t) =

5∑
n=1

B3nRn e
−kn y+i (a x− ξ t) (31)

T (x, y, t) =

5∑
n=1

B4nRn e
−kn y+i (a x− ξ t) (32)

myz (x, y, t) =
5∑

n=1

A6nRn e
−kn y+i (a x− ξ t) (33)

mxz (x, y, t) =
5∑

n=1

A7nRn e
−kn y+i (a x− ξ t) (34)

σxx (x, y, t) =
5∑

n=1

A3nRn e
−kn y+i (a x− ξ t) (35)

σyy (x, y, t) =
5∑

n=1

A4nRn e
−kn y+i (a x− ξ t) (36)

σxy (x, y, t) =

5∑
n=1

A5nRn e
−kn y+i (a x− ξ t) (37)

σxz (x, y, t) = σyz (x, y, t) = 0 (38)

P (x, y, t) =
5∑

n=1

A8nRn e
−kn y+i (a x− ξ t) (39)

Since, Rn(n = 1, 2, ..., 5) some coefficients. All constants defined in the Appendix.
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4. Applications

Consider the following non-dimensional boundary conditions to determine the co-
efficients Rn(n = 1, 2, ..., 5) and neglect the positive exponential to avoid the un-
bounded solutions at infinity. Then, the surface of the medium at y = 0, assumes
these conditions:

1. The mechanical boundary conditions are:

• The normal stress condition (mechanically stressed by constant force p1 ),
so that:

σyy = −p1 e
i (a x− ξ t) (40)

• The tangential stress condition (stress free), then:

σxy = 0 (41)

2. The condition of the couple stress (the couple stress is constant in y-direction).
This implies that:

myz = 0 (42)

3. The concentration condition (no variation on the mass concentration on the
surface y , that means:

∂ C

∂ y
= 0 (43)

4. The thermal condition (the half-space was taken to be insulated thermal
space) is:

∂T

∂y
= 0 (44)

Substitute the expressions of the considered quantities in these boundary conditions
(40–44), to obtain the equations satisfied by the parameters. Then, one can obtain
a system of five equations. After applying the inverse of matrix method, we have
the values of the constants Rn(n = 1, 2, ..., 5):


R1

R2

R3

R4

R5

 =



A41 A42 A43 A44

A45

A51 A52 A53 A54

A55

A61 A62 A63 A64

A65

A91 A92 A93 A94

A95

−k1B41 −k2B42 −k3B43 −k4B44

−k5B45



−1


−p1
0
0
0
0

 (45)

Thus, we obtain the expressions for the physical quantities of the plate surface.
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5. Numerical results and discussion

In order to illustrate the obtained theoretical results in the preceding section, follow-
ing Eringen [28], the magnesium crystal-like micropolar thermoelastic material was
chosen for purposes of numerical evaluations. All the units of the used parameters
are given in SI units. The constants were taken as:

λ = 9.4 × 1010 N/m2, µ = 4 × 1010 N/m2, K = 1.7 × 102 N/s K, ρ = 1.74 × 103

kg/m3, αt = 7.4033 × 10−7 1/K, Ce = 1.04 × 103 J/kg K, k∗ = 85 W/m K,
γ = 7.779 × 10−8 N, j = 2 × 10−20 m2, T0 = 298 K, b = 32 × 105 kg−1 m5 s−2,
d = 0.85 × 10−8 kg m−3 s, p1 = 1 N/m2, αc = 2.65 × 10−4 kg−1 m3 , a = 1.5 m,
t = 0.5 s, ξ = η + iη1, η = 0.6 rad/s, η1 = 2.8 rad/s, x = 0.45 m, 0 ≤ y ≤ 0.35 m.

These numerical values used to obtain the distribution of the real parts of the
displacement component u, the temperature T, the stress components σyy, σxy,
the couple stresses mtyz, the microrotation ϕ3, the chemical potential P, and the
concentration C with the distance y in the case of two types II and III of (G–N)
theory.

Figs. 1-8 represent the change in the behavior of these physical quantities against
distance y in 2-D when α∗ = 8 K−1, in the case of g = 9.8 m/s2, 0. Figs. 9–16
show the behavior of these physical quantities against distance y in 2-D during
g = 9.8 m/s2, in the case of α∗ = 8, 0 K−1.

Fig. 1 shows that the distribution of the displacement component udecreases in
the case of (G-N II) for y > 0, but in the case of (G-N III) it decreases in the range
0 ≤ y ≤ 0.03, then it increases for y > 0.03 with the increase of the gravity. Fig. 2
clarifies that the distribution of the temperature T increases in the case of (G-N II)
in the range 0 ≤ y ≤ 0.07, then it decreases in the range 0.07 ≤ y ≤ 0.35, while it
increases in the case of (G-N III) for y > 0 with the increase of the gravity. Fig. 3
explains that the distribution of the stress component σyy increases in the case of
(G-N II) for y > 0; while it increases in the range 0 ≤ y ≤ 0.035, then it decreases in
the range 0.035 ≤ y ≤ 0.35 in the case of (G-N III) with the increase of the gravity.
Fig. 4 shows that the distribution of the stress component σxy increases in the range
0 ≤ y ≤ 0.04, then it decreased in the range y > 0.04, in the case of (G-N II), while
it increases in the case of (G-N III) for y > 0 with the increase of the gravity.

Figs. 5 and 6 clarify that the distribution of the couple stress myzand the micro-
rotation vector ϕ3 respectively. The distribution of myz increases in both two types
II and III of (G-N) theory for y > 0 with the increase of the gravity, while the
distribution of ϕ3 decreases in the case of (G-N II) and increases in the case of
(G-N III) for y > 0 with the increase of the gravity. Figs. 7 and 8 depict that the
chemical potential Pand the concentration Crespectively. The distribution of P
decreases for both two types II and III of (G-N) theory for y > 0 with the increase
of the gravity, while the distribution of C increases for both two types II and III of
(G-N) theory for y > 0 with the increase of the gravity. It can deduce that all the
functions are continuous and all the curves converge to zero. The gravity has an
effective role in the distribution of all the physical quantities of the problem. Fig. 9
shows that the distribution of the displacement component u increases in the ranges
0 ≤ y ≤ 0.01, and 0.06 ≤ y ≤ 0.35, while it decreases in the range 0.01 ≤ y ≤ 0.06,
in the case of (G-N II), while it decreases in the range 0 ≤ y ≤ 0.05, then it increases
in the range 0.05 ≤ y ≤ 0.35, in the case of (G-N III) with the increase of α∗.
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Figure 1 Distribution of the displacement u against y while g = 9.8 m/s2, 0

Figure 2 Distribution of the displacement T against y while g = 9.8 m/s2, 0
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Figure 3 Distribution of the displacement σyy against y while g = 9.8 m/s2, 0

Figure 4 Distribution of the displacement σxy against y while g = 9.8 m/s2, 0
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Figure 5 Distribution of the displacement myz against y while g = 9.8 m/s2, 0

Figure 6 Distribution of the displacement Φ3 against y while g = 9.8 m/s2, 0
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Figure 7 Distribution of the displacement P against y while g = 9.8 m/s2, 0

Figure 8 Distribution of the displacement C against y while g = 9.8 m/s2, 0
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Figure 9 Distribution of the displacement u against y while α∗ = 8, 0

Figure 10 Distribution of the displacement T against y while α∗ = 8, 0
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Fig. 10 clarifies that the distribution of the temperature Tdecreases in the case of
(G-N II) in the range 0 ≤ y ≤ 0.06, then it increases in the range 0.06 ≤ y ≤ 0.35,
while it increases in the case of (G-N III) for y > 0 with the increase of α∗. Fig. 11
explains that the distribution of the stress component σyy decreases in the case of
(G-N II) for y > 0; while it decreases in the range 0 ≤ y ≤ 0.06, then it increases
in the range 0.06 ≤ y ≤ 0.35 in the case of (G-N III) with the increase of α∗. Fig.
12 shows that the distribution of the stress component σxy increases in the ranges
0 ≤ y ≤ 0.05, and 0.1 ≤ y ≤ 0.35, then it decreased in the range 0.05 ≤ y ≤ 0.1, in
the case of (G-N II), while it increases in the range 0 ≤ y ≤ 0.06, then decreases in
the range 0.06 ≤ y ≤ 0.35,in the case of (G-N III) with the increase of α∗. Figs. 13
and 14 clarify that the distribution of the couple stress myzand the microrotation
vector ϕ3 respectively. The distribution of myz in the context of (G-N II) increases
in the range 0 ≤ y ≤ 0.05, then decreases in the range 0.05 ≤ y ≤ 0.35, while in the
context of (G-N III) theory it increases in the range 0 ≤ y ≤ 0.04, moreover it seems
to be identically with the increase of α∗. The distribution of ϕ3 decreases in the case
of (G-N II) in the range 0 ≤ y ≤ 0.03, then increases in the range 0.03 ≤ y ≤ 0.35,
and increases in the case of (G-N III) for y > 0 with the increase of α∗. Figs. 15
and 16 depict that the chemical potential P and the concentration C respectively.
The distribution of P in the context of (G-N II) increases in the range 0 ≤ y ≤ 0.07,
then decreases in the range 0.07 ≤ y ≤ 0.35, while in the context of (G-N III) it
increases in the range y > 0 with the increase of α∗. The distribution of Cin the
context of (G-N II) decreases in the range 0 ≤ y ≤ 0.1, then increases in the range
0.1 ≤ y ≤ 0.35, while in the context of (G-N III) it decreases in the range y > 0
with the increase of α∗.

Figure 11 Distribution of the displacement σyy against y while α∗ = 8, 0
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Figure 12 Distribution of the displacement σxy against y while α∗ = 8, 0

Figure 13 Distribution of the displacement myzagainst ywhile α∗ = 8, 0
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Figure 14 Distribution of the displacement Φ3 against y while α∗ = 8, 0

Figure 15 Distribution of the displacement P against y while α∗ = 8, 0
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Figure 16 Distribution of the displacement C against y while α∗ = 8, 0

Figure 17 Distribution of the displacement v
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Figure 18 Distribution of the stress σxy

Figure 19 Distribution of the concentreation C

It can deduce that all the functions are continuous and all the curves converge
to zero. The empirical material constant α∗ is an effective physical operator in the
distribution of all the physical quantities of the problem.

The 3D curves are representing the complete relation between v, σxy, and C
against both components of the distance as shown in Figs. 17-19, where, g = 9.8
m/s2 and α∗ = 8 K−1 with the presence of the micropolar effect at t = 0.5 s. These
figures are very important to study the dependence on the distances x and y while
they are moving in wave propagation.
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6. Concluding remarks

The results concluded from the above analysis can be summarized as:
1. The gravity and the temperature dependent properties as effective physical
operators having an effective role on the distribution of the physical quantities;
since the behavior of them varying with the increase of the value of these physical
operators.
2. The micropolar is an important property; the presence and the absence of this
property is observable effect on the variation of the considered physical quantities.
3. The diffusion is a significant characteristic property of the used medium in the
study.
4. The value of all physical quantities converges to zero with an increase in the
distance y and all functions are continuous.
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Appendix

m1 = l1 + 1 m2 = a2 − l5 ξ2

m1
m3 = i a l4

m1
m4 = l3

m1
m5 = i a l4

m6 = a2 − l5 ξ
2 m7 = a2 − 2 l6 − l7 ξ

2 m8 = a2 − i ξ l9 m9 = ε3 − i ε2
m10 = ε1 ξ2

m9
m11 = − ξ2 l11

m9
m12 = a2 − ξ2

m9

B1n =
k2
n−m4(B3n+B4n)−m2

m3
B2n =

l6 B1n(k
2
n−a2)

(k2
n−m7)

B3n =
k2
n (B4n+m10)−(m10 a2+m12 B4n)

m11

B4n =
k4
n (l8 m11+m10)−k2

n (m8 m10+m10 a2+2 l8 m11 a2)+(l8 m11 a4+m8 m10 a2)
k4
n−k2

n (m8 +m12−l10 m11)+(m8 m12−l10 m11 a2)

A1n = i a− knB1n A2n = − (kn + i aB1n)
A3n = l12 (i aA1n − knA2n) + i a l13A1n − l14B3n − l14B4n

A4n = l12 (i aA1n − knA2n) − kn l13A2n − l14B3n − l14B4n

A5n = l15 (−knA1n + i aA2n) + l16 (i a knA2n −B2n)
A6n = −knB2n l17 A7n = i aB2n l17
A8n = −l18 (i aA1n − knA2n) + l19B3n + l20B4n

A9n = −knB3n n = 1, 2, 3, 4, 5.

l1 = λ0+µ0

µ0+k∗
0

l2 =
k∗
0

µ0+k∗
0

l3 =
ρ c21

µ0+k∗
0

l4 =
ρ g c21

(µ0+k∗
0 )f(T )

l5 =
ρ c21

(µ0+k∗
0 )f(T ) l6 =

c21 k∗
0

γ0 ω∗2
1

l7 =
j ρ c21

γ0 f(T ) l8 =
ω∗

1 β2
20 f(T )

ρ c21 b

l9 =
c21
d b l10 =

a∗ ω∗
1 β20

b β10
l11 = a∗ T0 β10

ρCe β20ω∗
1

l12 = λ0 f(T )
ρ c21

l13 =
(2µ0+k∗

0 ) f(T )

ρ c21
l14 = f(T ) l15 = µ0f(T )

ρc21
l16 =

k∗
0 f(T )

ρ c21

l17 =
γ0 f(T )ω∗

1

ρ c31
l18 =

β2
10 T0

β2
20 ρ c21

l19 = b β10 T0

β2
20

l20 = a∗ T0

β20

ε1 =
β2
10 T0 f(T )

ρ2 c21 Ce
ε2 =

K∗ ω∗
1

ρ c21 Ce
ε3 = K

ρ c21 Ce




