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The aim of this paper is to introduce the Green-Naghdi (G-N) theory of type III (with
energy dissipation) to study the effect of thermal loading due to laser pulse on general-
ized micropolar thermoelastic homogeneous isotropic medium in three dimensions. The
normal mode analysis technique is used to solve the resulting non-dimensional equations
of the problem. Numerical results for the displacement, thermal stress, strain, tem-
perature, couple stresses and micro-rotation distributions are represented graphically to
display the effect of the laser pulse on the resulting quantities. Comparisons are made
within the theory in the presence and absence of the laser pulse.
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1. Introduction

The generalized theories of thermoelasticity, which admit the finite speed of ther-
mal signal, were the center of interest of active research during last three decades.
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Biot [1] introduced the theory of coupled thermoelasticity to overcome the first
shortcoming in the classical uncoupled theory of thermoelasticity where it predicts
two phenomena not compatible with physical observations. The generalized thermo-
elastic theories were introduced by Lord and Shulman [2] (L-S) and Green and Lind-
say [3] (G-L) in 1960’s. The (L-S) theory postulated a wave type heat conduction
law to replace the classical Fourier’s law. This law is the same as that suggested by
Cattaneo [4]. It contains the heat flux vector as well as its time derivative and also
contains a new constant that acts as a relaxation time. Othman [5] depicted the
dependence of the modulus of elasticity on reference temperature in the theory of
generalized thermoelastic diffusion with one relaxation time. In the context of the
(L-S) theory, the generalized thermoelastic problem with temperature dependent
properties was studied by He et al. [6]. The (G-L) theory modified the energy
equation, and allows two relaxation times. Othman and Song [7] studied the re-
flection of magneto-thermoelastic waves with two relaxation times and temperature
dependent elastic moduli.

Three new thermoelastic theories based on the entropy equality rather than the
usual entropy inequality introduced by Green and Naghdi [8-10]. The constitutive
assumptions for the heat flux vector are different in each theory. Thus, they obtained
three theories that they called thermoelasticity of type I, of type II and of type III.
When the theory of type I is linearized, one can obtain the classical system of
thermoelasticity. The theory of type II (a limiting case of type III) does not admit
energy dissipation. In the context of the Green-Naghdi theory Othman and Atwa
[11, 12] discussed some problems with and without energy dissipation.

The theory of micropolar elasticity was introduced and developed by Eringen [13].
The theory of micropolar continuum mechanics gives consideration to the micro-
structure. Micropolar theory is useful in structure materials with a fibrous, lattice,
or granular micropolar structural. The main difference of micropolar elastic material
from the classical elastic material is that each point has extra rotational degrees of
freedom independent of translation and the material can transmit couple stress as
well as usual force stress. The linear theory of micropolar thermoelasticity has been
developed by extending the theory of micropolar continua to include thermal effect
and comprehensive review work on the subject was given by Eringen [14, 15] and
Nowacki [16]. Dost and Taborrok [17] presented the generalized thermoelasticity
by using (G-L) theory. Chandrasekharaiah [18] developed a heat flux dependent
micropolar thermoelasticity. Boschi and Iesan [19] presented a generalized theory
of micropolar thermoelasticity that permits the transmission of heat as thermal
waves at finite speed. Othman et al. [20] studied the effect of initial stress and the
gravity field on micropolar thermoelastic solid with microtemperatures. Othman
and Song [21] investigated the effect of thermal relaxation and magnetic field on
generalized micropolar thermoelastic medium. Kumar and Choudhary [22, 23] have
discussed various problems in orthotropic micropolar continua. Othman and Atwa
[24] studied the deformation of micropolar thermoelastic solid with voids considering
the influence of various sources acting on the plane surface.

Recently, Othman et al. [25] discussed the effect of rotation and thermal load-
ing due to laser pulse on micropolar generalized thermoelastic solid. Othman and
Tantawi [26] investigated the effect of laser pulse and gravity field on thermoelastic
medium under Green-Naghdi theory. Kumar and Kaur [27] studied the effect of two
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temperatures and stiffness on waves propagating at the interface of two micropolar
thermoelastic media.

The so-called ultra-short lasers are those with pulse duration ranging from nano-
seconds to femtoseconds. In the case of ultra-short-pulsed laser heating, the high-
intensity energy flux and ultra-short duration laser beam have introduced situations
where very large thermal gradients or an ultra-high heating rate may exist on the
boundaries in Al-Qahtani and Datta [28] and Sun et al. [29]. Wang and Xu [30,
31] have studied the stress wave induced by nano-, pico-, and femtosecond laser
pulses in a semi-infinite metal by expressing the laser pulse energy as a Fourier
series. Youssef and Al-Felali [32] generalized thermoelasticity problem of material
subjected to thermal loading due to laser pulse.

Recently, Ronghou et al. [33] studied a generalized thermoelastic coupled prob-
lem for the semi-infinite plane induced by pulsed laser heating locally by adopting
(L-S) generalized thermoelasticity. Othman et al. [34] discussed the effect of ther-
mal loading due to laser pulse on generalized thermoelastic medium with different
theories. Kumar et al. [35] discussed the deformation of micropolar generalized
thermoelastic solid subjected to thermo-mechanical loading due to thermal laser
pulse.

The present investigation is to study the effect of thermal loading due to laser
pulse on generalized micropolar thermoelastic homogeneous isotropic medium in
three dimensions in the context of (G-N) theory of type III (with energy dissipation)
without any body forces or heat sources. The problem has been solved numerically
using a normal mode analysis. Numerical results for the displacement, thermal
stress, strain, temperature, couple stresses and microrotation distributions, with
and without laser pulses, are represented graphically.

2. Governing equations and formulation of the problem

The governing equations of an isotropic and homogeneous elastic medium with
generalized thermoelastic micropolar in the context of (G-N) theory of type III in
the absence of body forces are:
The equation of motion:

σil,l = ρüi (1)

εilrσli +mli,l = ρj
∂2ϕi

∂t2
(2)

The constitutive relations:

σil = λ ur,rδil + (µ+ k) ul,i + µ ui,l − kεilrϕr − γ̂T δil (3)

mil = αϕr,r δil + βϕi,l + γϕl,i (4)

The Heat conduction equation:

KT,ii +K∗Ṫ,ii = ρ CE T̈ + γ̂T0ür,r − ρQ̇ (5)

The strain-displacement relation:

eil =
1

2
(ui,l + ul,i) (6)
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In the preceding equations, λ and µ are Lame’ constant, ρ is the density, σil

are the components of the stress tensor, ui = (u, v, w) are the components of the
displacement, t is the time variable, ϕi = (0, ϕ, 0) are the microrotation components,
j is the microinertia moment, k , α, β, γ are the micropolar constants, mil is the
couple stress tensor, εirl is the alternate tensor, γ̂ is a material constant given by
γ̂ = (3λ+ 2µ+ κ)αT , where αT is the coefficient of linear thermal expansion, K
is the thermal conductivity, K∗ is the material characteristic of the theory, CE

is the specific heat at constant strain, T is the absolute temperature, and T 0

is the temperature of the medium in its natural state, assumed to be such that
|(T−T0)/T0| << 1, Q is the heat input of the laser pulse.

We will consider that the surface is illuminated by a laser pulse given by the
heat input as Al-Qahtani and Datta [28] and Tang and Araki [36]:

Q = I0f(t)g(y)h(x) (7)

where I0 is the energy absorbed, the temporal profile f(t)is represented as:

f(t) =
t

t20
exp(− t

t0
) (8)

where t0 is the pulse rise time. The pulse is also assumed to have a Gaussian
spatial profile in y :

g(y) =
1

2πr2
exp(−y2

r2
), (9)

where r is the beam radius, and as a function of the depth x the heat deposition
due to the laser pulse is assumed to decay exponentially within the solid:

h(x) = ηe−ηx (10)

From Eqs. (6–8) in Eq. (5) we get:

Q =
I0ηt

2πr2t20
exp(−y2

r2
− t

t0
) exp (−ηx) (11)

We can rewrite the equation of motion as:

ρ
∂2u

∂t2
= (λ+ µ)

∂e

∂x
+ (µ+ k)∇2u− k

∂ϕ

∂z
− γ̂

∂T

∂x
(12)

ρ
∂2v

∂t2
= (λ+ µ)

∂e

∂y
+ (µ+ k)∇2y − γ̂

∂T

∂y
(13)

ρ
∂2w

∂t2
= (λ+ µ)

∂e

∂z
+ (µ+ k)∇2w + k

∂ϕ

∂x
− γ̂

∂T

∂z
(14)

(α+ β + γ)
∂2ϕ

∂y2
+ γ(

∂2ϕ

∂x2
+

∂2ϕ

∂z2
) + k(

∂u

∂z
− ∂w

∂x
)− 2kϕ = ρj

∂2ϕ

∂t2
(15)

and the conduction equation takes the form:

K∇2T +K∗∇2 ∂T

∂t
= ρCE

∂2T

∂t2
+ γ̂T0

∂2e

∂t2
− ρQ̇ (16)
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The constitutive equations can be written as:

σxx = λ e+ (2µ+ k)
∂u

∂x
− γ̂ T (17)

σyy = λ e+ (2µ+ k)
∂v

∂y
− γ̂ T (18)

σzz = λ e+ (2µ+ k)
∂w

∂z
− γ̂ T (19)

σxy = (µ+ k)
∂v

∂x
+ µ

∂u

∂y
− kϕ (20)

σyx = (µ+ k)
∂u

∂y
+ µ

∂v

∂x
+ kϕ (21)

σyz = (µ+ k)
∂w

∂y
+ µ

∂v

∂z
− kϕ (22)

σzy = (µ+ k)
∂v

∂z
+ µ

∂w

∂y
+ kϕ (23)

σzx = (µ+ k)
∂u

∂z
+ µ

∂w

∂x
− kϕ (24)

σxz = (µ+ k)
∂w

∂x
+ µ

∂u

∂z
+ kϕ (25)

mxy = γ
∂ϕ

∂x
(26)

myx = β
∂ϕ

∂x
(27)

mzy = γ
∂ϕ

∂z
(28)

myz = β
∂ϕ

∂z
(29)

where:

e = (exx + eyy + ezz) = (
∂u

∂x
+

∂v

∂y
+

∂w

∂z
) (30)

For simplifications we will use the following non-dimensional variables:

(x′, y′, z′) =
ϖ

C1
(x, y, z) (u′, v′, w′) =

ρC1ϖ

γ̂T0
(u, v, w) T ′ =

T

T0

σ′
ij =

σij

γ̂T0
t = ϖt m′

il =
ϖ

C1γ̂T0
mil ϕ′ =

ρC2
1

γ̂T0
ϕ (31)

Q ′ =
Q

ϖT0CE
ϖ =

ρCEC
2
1

K
C2

1 =
(λ+ 2µ)

ρ

Eqs. (12–19) in the non-dimensional forms (after suppressing the primes) reduce to:

∂2u

∂t2
= β1 ∇2u+ (1− β1)

∂e

∂x
− β2

∂ϕ

∂z
− ∂T

∂x
(32)
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∂2v

∂t2
= β1 ∇2v + (1− β1)

∂e

∂y
− ∂T

∂y
(33)

∂2w

∂t2
= β1 ∇2w + (1− β1)

∂e

∂z
+ β2

∂ϕ

∂x
− ∂T

∂z
(34)

a1
∂2ϕ

∂y2
+ γ(

∂2ϕ

∂x2
+

∂2ϕ

∂z2
) + a2(

∂u

∂z
− ∂w

∂x
)− 2a2ϕ = a3

∂2ϕ

∂t2
(35)

a4∇2T + a5∇2 ∂T

∂t
=

∂2T

∂t2
+ εT

∂2e

∂t2
− ∂Q

∂t
(36)

σxx = β3
∂u

∂x
+ (1− β3) e− T (37)

σyy = β3
∂v

∂y
+ (1− β3) e− T (38)

σzz = β3
∂w

∂z
+ (1− β3) e− T (39)

where:

∇2 = ∂2

∂x2 + ∂
2

∂y2 + ∂2

∂z2 β1 = µ+k
λ+2µ+k β2 = k

λ+2µ+k β3 = 2µ+k
λ+2µ+k

εT = γ̂2T0

ρKϖ a1 = α+ β + γ a2 = kC2
1/ϖ

2 a3 = ρjC2
1

a4 = 1/ϖ a5 = K∗/K

From Eqs. (37–39) by addition, we get:

σ = α1e− T (40)

where:

σ = (σxx + σyy + σzz)/3

α1 = (3− 2β3)/3

From Eqs. (32–34) after using Eq. (30) we can get:

∂2e

∂t2
= ∇2e− ∇2T (41)

Eliminating e from Eqs. (36) and (41) by using Eq. (40), we obtain:

∇2σ + a6∇2T =
∂2T

∂t2
+
∂2σ

∂t2
(42)

a4∇2T + a5∇2 ∂T

∂t
= a7

∂2T

∂t2
+ a8

∂2σ

∂t2
− ∂Q

∂t
(43)

where: a6 = 1− α1, a7 = 1 + εT
α1

, a8 = εT
α1
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3. The solution of the problem

The solution of the considered physical variables can be decomposed in terms of
normal modes as in the following form:

[u, v, w, e, T, σil,mil, ϕ](x, y, z, t)

(44)

= [u∗, v∗, w∗, e∗, T ∗, σ∗
il,m

∗
il, ϕ

∗](x) exp[ωt− i(ay + bz)]

where: i =
√
−1, ω is the angular frequency and a, b are the wave numbers in

the y and z -directions respectively.
Using Eq. (44) into Eqs. (42) and (43), we can obtain the following equations:

(D2 −A1)σ
∗ + a6(D

2 −A2)T
∗ = 0 (45)

A3(D
2 −A4)T

∗ −A5σ
∗ = − Q0f

∗(y, z, t) exp(−ηx) (46)

where:
D = d

dx A1 = a2 + b2 + ω2 A2 = a2 + b2 + ω2

a6
A3 = a4+a5ω

ω

A4 = a2 + b2 + a7ω
2

a4+a5ω
A5 = a8ω Q0 = I0η

2πr2t20

f∗(y, z, t) = (1− t
t0
) exp[−y2

r2 − ωt+ i(ay + bz)− t
t0
]

Eliminating T ∗ and σ∗ between Eqs. (45) and (46), we get the following two fourth
order ordinary differential equations:

(D4 −A6D
2 +A7)T

∗(x) = A8Q0f
∗(y, z, t) exp(−ηx) (47)

(D4 −A6D
2 +A7)σ

∗(x) = A9Q0f
∗(y, z, t) exp(−ηx) (48)

where:
A6 = A1+A4− a6A5

A3
A7 = A1A4− a6A2A5

A3
A8 = A1−η2

A3
A9 = a6(η

2−A2)
A3

Eq. (47) can be factored as:

(D2 − k21)(D
2 − k22)T

∗(x) = A8Q0f
∗(y, z, t) exp(−ηx) (49)

where kn (n = 1, 2) are the roots of the characteristic equation of Eq. (47).
We can consider the general solution of Eqs. (47) and (48) which are bound at
infinity in the form:

T ∗(x) =
2∑

n=1

Mn exp(−knx) +B1Q0f
∗(y, z, t) exp(−ηx) (50)

σ∗(x) =

2∑
n=1

H1nMn exp(−knx) +B2Q0f
∗(y, z, t) exp(−ηx) (51)

where:
B1 = A8

η4−A6η2+A7
B2 = A9

η4−A6η2+A7
H1n =

A3(k
2
n−A4)
A5

(n = 1, 2)

From Eqs. (50) and (51) into Eq. (40) after using Eq. (35) we obtain:

e∗(x) =

2∑
n=1

H2nMn exp(−knx) +B3Q0f
∗(y, z, t) exp(−ηx) (52)
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where: H2n = 1+H1n

α1
B3 = B1+B2

α1

From Eqs. (51) and (52) together with (32), (34) and (35) after using Eq. (44) we
get:

(D2 −A10) u
∗ + ibA11ϕ

∗

= −
2∑

n=1

knH3nMn exp(−knx)−B4ηQ0f
∗(y, z, t) exp(−ηx) (53)

(D2 −A10)w
∗ +A11Dϕ∗

= −
2∑

n=1

ibH3nMn exp(−knx)− ibB4Q0f
∗(y, z, t) exp(−ηx) (54)

(D2 −A12)ϕ
∗ − ibA13u

∗ −A13Dw∗ = 0 (55)

where:
A10 = a2 + b2 + ω2

β1
A11 = β2

β1
A12 = b2 + a2a1+2a2+a3ω

2

γ A13 = a2

γ

B4 = B1−(1−β1)B3

β1
H3n = kn−(1−β1)knH2n

β1

Eliminating ϕ∗ between Eqs. (53–55), we get:

−ib(D2 −A10)w
∗ + (D3 −A10D)u∗ +

2∑
n=1

H4nMn exp(−knx)

+B5Q0f
∗(y, z, t) exp(−ηx) = 0 (56)

ibA14Dw∗ + (D4 −A15D
2 +A16)u

∗ +
2∑

n=1

H5nMn exp(−knx)

+B6Q0f
∗(y, z, t) exp(−ηx) = 0 (57)

where:
A14 = A11A13 A15 = A10 +A12 A16 = A10A12 − b2A11A13

B5 = (b2 − η2)B4 B6 = (η2 −A12)ηB4

H4n = (b2 − k2n)H3n H5n = (k2n −A12)knH3n

From (56) and (57) we can obtain the following sixth order ordinary differential
equations:

(D6 −A17D
4+A18D

2 −A19)u
∗(x)

=
2∑

n=1

H6nMn exp(−knx) +B7Q0f
∗(y, z, t) exp(−ηx) (58)

(D6 −A17D
4+A18D

2 −A19)w
∗(x)

=
2∑

n=1

H7nMn exp(−knx) +B8Q0f
∗(y, z, t) exp(−ηx) (59)

where:
A17 = A10 +A15 −A14 A18 = A16 +A10A15 −A10A14 A19 = A10A16

B7 = (A10 − η2)B6 + ηB5 B8 = 1
ib

[
(η4 −A15η

2 +A16)B5 + (η2 −A10)ηB6

]
H6n = (A10 − k2n)H5n + knH4n
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H7n = 1
ib

[
(k4n −A15k

2
n +A16)H4n + (k2n −A10)knH5n

]
Eq. (58) can be factored as:

(D2 − λ2
1)(D

2 − λ2
2)(D

2 − λ2
3)u

∗(x)

=
2∑

n=1

H6nMn exp(−knx) +B7Q0f
∗(y, z, t) exp(−ηx) (60)

where: λm (m = 1, 2, 3) are the roots of the characteristic equation of Eq. (58).
We can consider the general solution of Eqs. (58) and (59) which are bound at
infinity in the form:

u∗(x) =
2∑

n=1

H8n Mn exp(−knx) + E1Q0f
∗(y, z, t) exp(−ηx)

+
3∑

m=1

Lm exp(−λmx) (61)

w∗(x) =
2∑

n=1

H9n Mn exp(−knx) + E2Q0f
∗(y, z, t) exp(−ηx)

+
3∑

m=1

R1mLm exp(−λmx) (62)

From (61) and (62) into (53) we get:

ϕ∗(x) =
2∑

n=1

H10n Mn exp(−knx) + E3Q0f
∗(y, z, t) exp(−ηx)

+
3∑

m=1

R2mLm exp(−λmx) (63)

where:
E1 = B7

η6−A17η4+A18η2−A19
E2 = B8

η6−A17η4+A18η2−A19
E3 = (A10−η2)E1−ηB4

ibA11

H8n = H6n

k6
n−A17k4

n+A18k6
n−A19

H9n = H7n

k6
n−A17k4

n+A18k6
n−A19

H10n =
(A10−k2

n)H8n−knH3n

ibkn
R1m =

(λ4
m−A15λ

2
m+A16)

ibA14λm
R2m =

A10−λ2
m

ibA11

From Eqs. (44), (50), (52), (60) and (61) into (37) and (39) we get:

σ∗
xx(x) =

2∑
n=1

H11nMn exp(−knx) + E4Q0f
∗(y, z, t) exp(−ηx)

−
3∑

m=1

β3λmLm exp(−λmx) (64)

σ∗
zz(x) =

2∑
n=1

H12nMn exp(−knx) + E5Q0f
∗(y, z, t) exp(−ηx)

−ib

3∑
m=1

R1mLm exp(−λmx), (65)
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where:
E4 = (1− β3)B3 − β3ηE1 −B1 E5 = (1− β3)B3 − ibE2 −B1

H11n = (1− β3)H2n − β3knH8n − 1 H12n = (1− β3)H2n − ibH9n − 1

4. Applications

In order to complete the solution we have to know the parameters Mn(n = 1, 2)
and Lm(m = 1, 2, 3), so we will consider the following boundary conditions at x = 0
and I0 = 0:

• Mechanical boundary condition that the bounding plane to the surface has
no traction anywhere and has no variation of microrotation, so we have

σ(0, y, z, t) = σxx(0, y, z, t) = σyy(0, y, z, t) = σzz(0, y, z, t) = 0

(66)

∂ϕ

∂x
= 0

• The thermal boundary condition is that the surface of the half space is sub-
jected to a thermal shock:

T (0, y, z, t) = s(0, y, z, t) = s∗ exp[ωt− i(ay + bz)] (67)

Applying the boundary conditions (66) and (67) on Eqs. (50), (51), (63–65) we
obtain a system of five equations. After applying the inverse of matrix method:

M1

M2

L1

L2

L3

 =


1 1 0 0 0

H11 H12 0 0 0
k1H101 k2H102 λ1R21 λ2R22 λ3R23

H111 H112 −β3λ1 −β3λ2 −β3λ3

H121 H122 −ibR11 −ibR12 −ibR13


−1 

s∗

0
0
0
0

 (68)

We obtain the values of the five constants Mnand Lm. Hence, we obtain the ex-
pressions for the displacement components (u,w), the stress, the strain, the tem-
perature, the tangential couple stress and the microrotation distribution of the
micropolar generalized thermoelastic medium.
Finally, we can obtain the displacement component v from Eqs. (50) and (52) into
(33) after using (44), so we get:

(
d2

dx2
− λ2

v) v
∗ =

2∑
n=1

ξn exp(−knx) + ξ3Q0f
∗ exp(−ηx) (69)

where:
λ2
v = (a2 + b2 + ω2

β1
) ξn = ia[ (1−β1)H2n−1

β1
]Mn ξ3 = ia[ (1−β1)B3−B1

β1
]

The solution of the ordinary differential Eq. (69) takes the form:

v∗(x) =

2∑
n=1

rn exp(−knx) + r3Q0f
∗ exp(−ηx)+r4 exp(−λvx), (70)
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where rn = ξn
k2
n−λ2

v
, r3 = ξ3

η2−λ2
v
, and r4 is a constant to be determined from the

boundary conditions.

From Eqs. (40) and (44) into (38) after using the boundary conditions (66) and
(67) we get:

r4 =
(1− α1 − β3)

iaα1β3
s∗ − r3 −

2∑
n=1

rn (71)

From Eq. (63) and (44) into (26) we can get:

m∗
xy(x) =

2∑
n=1

−γknH10nMn exp(−knx)− γηE3Q0f
∗(y, z, t) exp(−ηx)

−
3∑

m=1

γλmR2mLm exp(−λmx) (72)

Similarly we can get the other components of the couple stresses.

5. Particular cases

Case 1: Without micropolar effective:

The corresponding equations for the generalized thermoelastic medium without the
micropolar effect can be obtained from the above mentioned cases by taking:

k = α = β = γ = 0.

Case 2: Without energy dissipation

To obtain the field variables for the micropolar thermoelastic medium without en-
ergy dissipation (the linearized G-N theory of type II), we can take K∗ = 0.

6. Numerical results and discussions

In order to illustrate our theoretical results obtained in the preceding section, we
now present some numerical results. In the calculation, we take the copper as the
material subjected to mechanical thermal disturbances. Sinceω is complex, we take
ω = ω0 + iζ, where i is the imaginary number. The numerical constants of the
problem were taken at T0 = 293K as:

λ = 9.4× 1011 kg m−1 s−2, µ = 4× 1011 kg m−1 s−2,

ρ = 1.74× 103 kg m−3, k = 1× 1011 kg m−1 s−2, K = 1× 10−4 Wm−1 k−1,

K∗ = 1.3× 10−4 Wm−1 k−1, αT = 1.78× 10−5 K−1, CE = 1.04× 103 kg m−3,

j = 2 × 10−20 m2, α = β = γ = 0.779× 10−8 kg m−1 s−2, ω0 = − 2.5,

ζ = − 0.1, a = 0.2, b = 1.2, η = 1 m−1, r = 100 µm, t0 = 8 nan.s, s∗ = 10

The numerical technique, outlined above, was used for the distribution of the
real part of the displacement component u, stress σ, strain e, the temperature
T, microrotation ϕ and tangential couple stress mxyfor the problem. Here, all the
variables are taken in non-dimensional form.
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Figure 1 Displacement distribution at y = z = 0.1 and t = 0.1

Figure 2 Stress distribution at y = z = 0.1 and t = 0.1

Figures 1-6 represented 2D curves for the distributions of the physical quantities
against the distance x at y = z = 0.1, t = 0.1 in the cases of the absence and
presence of laser pulse effect (I0 = 0, 108, 1010). In these figures, the solid line,
dashed line and dotted line correspond for I0 = 0, 108, 1010 respectively, which is
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furthermore precisely explained in each figure in the legend. Figures 1, 2, 5 illus-
trate the variations of the displacement component u, stress σ and microrotation ϕ
with a distance x. These figures show that the above mentioned quantities decrease
with the increase of the distance x and finally all curves terminate at the zero value
at x > 6 approximately.

Figure 3 Strain distribution at y = z = 0.1 and t = 0.1

Figure 4 Temperature distribution at y = z = 0.1 and t = 0.1
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Figure 5 Microrotation distribution at y = z = 0.1 and t = 0.1

Figure 6 Tangential couple stress distribution at y = z = 0.1 and t = 0.1
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Figure 7 Displacement distribution at y = z = 0.1 and I0 = 105

Figure 8 Stress distribution at y = z = 0.1 and I0 = 105

It can be observed from these figures that the laser pulse value has an increasing
effect on both the displacement component u, the stress σand the microrotation
ϕ. Figures 3, 4, 6 describe the variations of the strain e, the temperature T and
the tangential couple stress mxywith a distance x. These figures show that these
quantities increase with the increase of the distance x and finally all curves converge
to zero for x > 6 approximately. It is observed from these figures that the laser
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pulse value has a decreasing effect on both the strain e, the temperature T and
tangential couple stress mxy.
Figures 7-12 represented 2D curves for the distributions of the physical quantities
against the distance x at y = z = 0.1 (with a fixed value of I0 = 105) taking three
values of the dimensionless time, namely t = 0.1, 0.2, 0.3. In these figures, the solid
line, dashed line and dotted line correspond for t = 0.1, 0.2, 0.3 respectively, which
is furthermore precisely explained in each figure in the legend.

Figure 9 Strain distribution at y = z = 0.1 and I0 = 105

Figure 10 Temperature distribution at y = z = 0.1 and I0 = 105
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Figure 11 Microrotation distribution at y = z = 0.1 and I0 = 105

Figure 12 Tangential couple stress distribution at y = z = 0.1 and I0 = 105

Figures 7, 11 illustrate the variations of the displacement component u and the
microrotation ϕ with a distance x. These figures show that the displacement com-
ponent u and the microrotation ϕ increase with the increase of the distance x and
finally all curves tends to zero value at x > 6 approximately and it is observed
from these figures that the dimensionless time t has an increasing effect on both
the displacement component u and the microrotation ϕ.
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Figure 13 Displacement distribution at z = 0.1, t = 0.1 and I0 = 108

Figure 14 Stress distribution at z = 0.1, t = 0.1 and I0 = 108

Figures 8 describes the variations of the stress σ with a distance x. We can see
from this figure that stress σdecreases with the increase of the distance x and has
a minimum value at x = 0.71 for the three values of the time t and then all curves
increase tending to zero for x > 6. From this figure, it can be seen that the
dimensionless time t has an increasing effect on the stress σ.
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Figure 15 Strain distribution at z = 0.1, t = 0.1 and I0 = 108

Figure 16 Temperature distribution at z = 0.1, t = 0.1and I0 = 108

Figures 9, 10 display the variations of the strain e and the temperature T with
a distance x and it is clear that the above mentioned physical quantities decrease
with the increase of the distance x for all values of t and finally all curves converge
to zero for x > 6. It is noticed from these figures that the dimensionless time t has
a decreasing effect on both the strain e and the temperature T.
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Figure 17 Microrotation distribution at z = 0.1, t = 0.1 and I0 = 108

Figure 18 Tangential couple stress distribution at z = 0.1, t = 0.1 and I0 = 108

Figure 12 explains the variations of the tangential couple stress mxywith a distance
x. We can see from this figure that the tangential couple stress increases with the
increase of the distance x and has a maximum value at x = 0.82 for the three values
of the time t and then all curves decrease tending to zero for x > 6. From this
figure, it can be seen that the dimensionless time t has an increasing effect on the
tangential couple stress mxy.

Figures 13-18 represented 3D curves for the variations of the physical quantities
against the distance x at z = 0.1, t = 0.1 and I0 = 108. These figures are very
important to study the dependence of the physical quantities on both components
of distance x, y. It can be clearly seen that the curves obtained are highly depending
on both distance components and we can see that some quantities increase on the
negative direction of the distance, while some on positive direction.
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7. Concluding remarks

A three-dimensional model of the generalized micropolar thermoelastic medium un-
der the influence of thermal loading due to laser pulse was established and according
to the results the following conclusions can be obtained:

1. The results indicate that the effect of the thermal loading due to laser pulse
on the components of the displacement, thermal stress, strain, temperature,
microrotation and tangential couple stress distributions is very pronounced.

2. The normal mode analysis, used in this article to solve the problem, is appli-
cable to a wide range of problems in thermodynamics and thermoelasticity.
This method gives exact solutions without any assumed restrictions on either
the temperature or stress distributions.

3. The values of the distributions of all physical quantities converge to zero with
increasing distance x and all functions are continuous. Using these results;
it possible to investigate the disturbance caused by more general sources for
practical applications.

4. Physical applications are found in the mechanical engineering, geophysical,
and industrial sectors.
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