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In this work, novel types of internally reinforced hollow-box beams were structurally
optimized using a Finite Element Updating code built in MATLAB. In total, 24 differ-
ent beams were optimized under uncoupled bending and torsion loads. A new objective
function was defined in order to consider the balance between mass and deflection on
relevant nodal points. New formulae were developed in order to assess the efficiency of
the code and of the structures. The efficiency of the code is determined by comparing
the Finite Element results of the optimized solutions using ANSYS with the initial solu-
tions. It was concluded that the optimization algorithm, built in Sequential Quadratic
Programming (SQP) allowed to improve the effective mechanical behavior under bending
in 8500%, showing a much better behavior than under torsion loadings. Therefore, the
developed algorithm is effective in optimizing the novel FEM models under the studied
conditions.

Keywords: structural optimization, mechanical behavior, Finite Element Method, Solid
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1. Introduction

In the last years, there has been an increase in the use of computers in engineer-
ing and applied sciences. This is due to the extreme improvement of the personal
computers capabilities, which made possible to solve complex engineering problems
from several hours to few days. The Finite Element Method-FEM programs, like
ANSYS, are extremely powerful, especially when they are allied with optimization
procedures. The FEM has some limitations in the results accuracy when modeling
complex structures [1]; however, there have been many developments in this field.
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For instance, X. Bin has modeled an aerial working vehicle with good correlation
between results [2]. Several optimization methods have been developed over the
last few years with application to structural static analysis [3–7]). S. Kalanta et al.
shown that 2D optimization problems, namely in terms of mathematical models and
solution algorithms, can be adopted for solutions of 3D optimization problems [8]).
H. Silva and J. Meireles developed a Finite Element Model Updating methodology
for static analysis, with the main aim to optimize the mechanical behavior of steel
objects subjected to bending and torsion uncoupled loadings ([9–10]) Some authors
applied optimization methods to beams of various cross-sections manufactured by
cold forming in order to optimize relevant geometric variables of the structures [11].
A new global optimization approach that is well suited for the optimization of cross-
sections is presented by H. Liu et al. in the paper ”Knowledge-based global opti-
mization of cold-formed steel columns”. It is found that the developed optimization
process can effectively learn from the optimization processes and apply the knowl-
edge on related design optimization problems. This is an efficient learning mecha-
nism that is not present in most optimization schemes [12]. E. Magnucka-Blandzi
and K.Magnucki wrote a paper about cold-formed thin-walled channel beams with
open or closed flanges [13]. Leng et. al demonstrated the application of formal
optimization tools with the aim of maximizing the compressive strength of an open
cold-formed steel cross section. In this work, the cross section shape is not lim-
ited by pre-determined elements (flanges, webs, stiffeners, etc.), as is commonly
required to meet the necessity of conventional code-based procedures for design
that employ simplified closed-form stability analysis [14]. The design optimization
of oval hollow-box beams made of stainless steel was studied by M. Theofanous
et. al. The authors studied the structural response of stainless steel oval hollow
section under compression [15]. Structures made by several beams were studied by
Lagaros et al. The authors performed an optimum design of 3D steel structures
having perforated I-section beams [16]. Tsavdaridis and D’Mello studied the opti-
mization of novel elliptically-based web opening Shapes. The work developed by
the authors improves the structural behavior of perforated beams while aiming an
economic design in terms of manufacture and usage [17]. McKinstray et al., studied
the optimal design of fabricated steel beams for applications on long-span portal
frames. The design optimization takes into account several relevant factors, such as
ultimate and serviceability limit states, and deflection limits, as recommended by
the Steel Construction Institute (SCI). The authors used a genetic algorithm (GA)
in order to optimize geometric variables of the plates, which were used for columns,
rafters and haunches [18]. Tran and Li presented a global optimization method
for the design of the cross-section of channel beams under uniformly distributed
transverse loading. The optimization presented by the authors is carried out using
the trust-region method (TRM), and it was based on factors, such as the “...failure
modes of yielding strength, deflection limitation, local buckling, distortional buck-
ling and lateral–torsional buckling”, Cited from [19]. In this paper, Finite Element
models are optimized in static analysis by coupling MATLAB and ANSYS. This
paper studies solutions already presented by ([20–21]).



Structural Optimization of Internally Reinforced Beams Subjected ... 733

2. Sequential Quadratic Programming (SQP)

SQP methods are robust methods t in the field of nonlinear programming. For
example, Schittkowski [22], has implemented and tested a version that performs
better than every other tested method in terms of efficiency, accuracy, and percent-
age of successful solutions. The development was tested over a large number of test
problems. Having as basis the work of Biggs [23], Han [24], and Powell ([25]; [26]),
this method permits the close mimic of the Newton’s method in constrained opti-
mization in the same manner as it is done for unconstrained optimization. It works
by doing an approximation of the Hessian of the Lagrangian function using a quasi-
Newton updating method at each major iteration, which is used after to generate
a QP subproblem. The solution of this subproblem is then used to form a search
direction for a line search procedure. An overview of SQP is found in Fletcher [27],
Gill et al. [28], Powell [29], and Schittkowski [30]. The general method is described
next. The main idea of the SQP is the formulation of a QP subproblem based on a
quadratic approximation of the Lagrangian function, as shown the Eq. (1).

L(x, λ) = f(x) +
m∑
i=1

λigi(x) (1)

A simplification of the eq. 1 is done using the assumption that bound constraints
have been expressed as inequality constraints. The QP subproblem is obtained by
the linearization of the nonlinear constraints.

The Quadratic Problem (QP) can be described by the set of following equations:

min
1

2
dTHkd+∇f(xk)

T d

∇gi(xk)
T d+ gi(xk) = 0 i = 1, ..., me (2)

∇gi(xk)
T d+ gi(xk) ≤ 0 i = me + 1, ..., m

The solution is then used to form a new iterate, shown in (3):

xk+1 = xk + αkdk (3)

The parameter αk is known as step length. Its determination happens by means
of an appropriate line search procedure, in order for an enough decrease in a merit
function to is obtained. The matrix Hk is a positive definite approximation of the
Hessian matrix of the Lagrangian function, as shown in (1). A constrained problem
can usually be solved in fewer iteration that an unconstrained problem in nonlinear
optimization using SQP. The main reason for this fact, is that, the limits that
are imposed in the constrained optimization problem is a useful information that
allows the optimizer to find feasibility with more easiness, by directing the search
and setting the step length more efficiently [31].

3. Active set algorithm

The optimization function used in the MATLAB programming code was fmincon.
The fmincon function attempts to find the minimum of a constrained nonlinear
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multivariable function is a Nonlinear programming solver. It searches for a minimum
in a problem described by (4):

min
x

f(x) such that


c(x) ≤ 0
ceq(x) = 0
A.x ≤ b
Aeq.x = beq
lb ≤ x ≤ ub

(4)

where: b and beq are vectors, A and Aeq are matrices, c(x ) and ceq(x ) are func-
tions that return vectors, and f (x ) is a function that returns a scalar; f (x ), c(x ),
and ceq(x ) can be nonlinear functions; x, lb, and ub can be passed as vectors or
matrices [32].

In a constrained optimization problem, such as in this, the aim is usually to
modify the problem, making it become a sub problem which requires less difficulty
and which can be solved and used in an iterative process. Early methods used
the translation of the constrained problem to a basic unconstrained problem. This
was usually done by means of a penalty function for constraints that are near
or beyond the constraint boundary. This ensure that the constrained problem is
solved using several sequential parameterized unconstrained optimizations. These
optimizations cause the sequence limit to converge to the constrained problem.
These early methods are nowadays considered of low inefficiency, and therefore,
obsolete. They have been replaced by newer methods that are focused on the
solving of the Karush-Kuhn-Tucker (KKT) equations. The KKT equations are
needed conditions to achieve optimality on a constrained optimization problem.
The KKT equations are both needed and enough for a global solution point in the
case of problems which belong to the convex programming problem class. To be
considered as such, f (x ) and Gi(x ), i = 1, m, must be convex functions.

The KKT equations can be expressed as (5):

∇f(x∗) +
m∑
i=1

λi.∇Gi(x
∗) = 0

λi.∇Gi(x
∗) = 0, i = 1, ...,me (5)

λi ≥ 0, i = me + 1, ...,m.

in addition to the original constraints (6):

g(x) = 0

h(x) ≤ 0 (6)

xl ≤ x ≤ xu

where:

x is the vector of the optimization parameters,

q(x), g(x) and h(x) are functions.
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The first equation describes the canceling of the gradients between the objective
function and the active constraints at the solution point. For this to happen, La-
grange multipliers (λi, i = 1,m) are needed for the balance of the deviations in the
same magnitude of the objective function and constraint gradients. Due to the fact
that only active constraints are included in the canceling, inactive constraints must
not be included in the operation, and, therefore, are given Lagrange multipliers
equal to 0. This fact is stated in an implicit manner in the last two KKT equations.
The solution of the KKT equations serve as the basis of various nonlinear program-
ming algorithms, which attempt to compute the Lagrange multipliers directly. For
instance, constrained quasi-Newton methods guarantee superlinear convergence by
doing the accumulation of second-order information regarding the KKT equations
using a quasi-Newton updating procedure. These methods are commonly known
as Sequential Quadratic Programming (SQP) methods. A Quadratic Programming
(QP) subproblem is solved at each major iteration. This solving method is also
known as Iterative Quadratic Programming, Recursive Quadratic Programming,
and Constrained Variable Metric [33].

4. Numerical Procedure

4.1. FEM models

In order to obtain an effective response to transversal beam deflection, in terms of
stiffness, twelve Finite Element Method (FEM) models were built in the commer-
cial FEM program ANSYS. These models represent the novel beams. The novel
beams are composed by two sandwich panels on the top and on the bottom and
a reinforcement pattern on the sides, as shown in the Fig. 1:

Figure 1 Configuration of beam types [10–11]

As shown in the Fig. 1, the construction technique involves concentric tubes of
rectangular shape, that will be ribbed in its ends to maximize its stiffness capabilities
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(Fig. 1). This constructing is based on the principle that this type of beams needs
a zone along which accessories pass, such as compressed air tubes and electric cables.
The central zone of the beam was chosen because that zone contains the neutral
axis. In the peripheral zone, there are two lateral zones, and two other zones: one
at the top and the other at the bottom. In the two top and bottom zones, the
reinforcement is fundamental to increase bending stiffness, while the lateral zones
increase mainly the torsion stiffness. The chosen geometry for the upper and bottom
reinforcing zones are shown in the Fig. 2. These geometries were previously studied
in sandwich beams in [34–35].

Figure 2 Section view of the sandwich beams: web-core (left) (beam 1), corrugated-core (middle)
(beam 2) and honeycomb core (right) (beam 3)

In the lateral zones, the geometries of the reinforcements designed to improve torsion
stiffness are defined according to the Fig. 3 and 4.

The Figs. 3 and 4 show the inner areas reinforcements of the novel beams.

Figure 3 Areas of the FEM models of the beams: Pattern 1 (left) and Pattern 2(right). The top
and right side areas are totally hidden to allow inner view
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Figure 4 Areas of the FEM models of the beams: Pattern 3 (left) and Pattern 4(right). The top
and right side areas are totally hidden to allow inner view

Figure 5 Internal reinforcements on beam 3 pattern 3 (Silva and Meireles 2015; Silva and Meireles

Figure 6 Areas of the FEM model representing the HSS or simple beam
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The Fig. 5 shows an additional internal reinforcement on one of the beams, named
transversal reinforcements. These transversal reinforcements are used in order to
evaluate its influence on the improvement of the part’s stiffness. In this work, the
beams can be of two types: A and B. The beams A don’t have the transversal
reinforcements that are along the beam’s flange, while all the beams B have them.
The models of the Fig. 3 and 4 are of the A type, while the model represented on
the Fig. 5 is of the B type.

The results obtained in this work are in relation to a simple hollow-box beam,
designated by Hollow Solid section, and abbreviated HSS with similar dimensions,
but with a thickness of 2 mm, and without the internal reinforcements, as shown in
the Fig. 6.

The HSS beams (Fig. 6), were studied using the same conditions as on the sand-
wich beams. These conditions and geometries, originally presented by (Silva and
Meireles 2015; Silva and Meireles -), may have their mechanical behavior improved
by the use of optimization. For the FEM modelling, the used element was SHELL63
(Shell Elastic 4 nodes). The elements are free quadrilateral elements with a mean
length of 0,0025 m. A mesh sensitivity analysis on the exact same geometries was
already done by (Silva 2015; Silva -). The beam was constrained in the lines of the
extremities (z = 0 and z = 1), being the support type simply supported at its ends,
as shown in the Fig. 7. Concentrated loads were used by simplification in order to
simulate the action of bending and torsion. Bending was applied by one concen-
trated load of 1500 N, on the center of the top face, as shown in the Fig. 7 (left).
Torsion is applied by means of a binary load of 2000 N, as in Fig. 7 (right). The
same load intensities were already applied to similar models by (Silva and Meireles
[20], Silva and Meireles [21]).

Figure 7 DOF Constraints and loadings in bending (left) and torsion (right) [20–21]

4.2. Optimization

For the optimization process, the models were optimized in terms of nodal displace-
ments in the y direction, measured on the three points, as shown in the Fig. 8, and
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total mass of the model. According to Newton’s 2nd law, the force that the beam is
subjected to is very closely related to the mass. The beam’s mass can be reduced
using materials having low density, however, these materials reduce the Elasticity
Modulus significantly, The composite solutions, such as carbon fiber, are good in
terms of Young’s Modulus, but are not widely accepted due to their high cost. Due
to this, the Young’s Modulus is limited to the steel’s. In contrast, the deflection in
bending in inversely proportional to the Inertia Moment. For this reason, the search
for sections with simultaneously high Inertia Moments and low mass is a challenge
of this work.

In order to gather the displacements on the same points in each iteration, the
ANSYS input file has instructions in order to collect the displacements on the nodes
that are attached to the keypoints shown in the Fig. 8 (one by each keypoint). The
keypoints are located on the edges (2) and on the center (1). These keypoints were
chosen because their coordinate does not change during the optimization with the
change in the variable values. These points are strongly reinforced with ribs, and,
as such, it is not expected the local deformation to be significant for the considered
thicknesses.

Figure 8 Points used to calculate displacements on optimization procedure

These points were chosen in places in which all coordinates are kept the same,
in spite of the variation in the geometric variables. This avoids the direct influence
of the change in the design variables on the results.

The methodology of the Finite Element Model Updating program developed in
MATLAB in this work was previously developed for structural dynamic analysis
by [1]. It was also adopted by (Silva et al. 2013;[10]) on structural static analysis.
The Fig. 9 shows the interaction between ANSYS and the MATLAB optimization
program.
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Figure 9 Functional flow chart of the optimization methodology [1]

In this methodology, the MATLAB program works together with ANSYS. Ac-
cording to ([10]): MATLAB controls the optimization by means of the MATLAB
code and ANSYS calculates the FEM results. The objective function q(x) used in
this work is new, and the involved variables are also new (Fig. 10).

For the optimization, three design variables were chosen:
LG1 : Half of the length of the x dimension of the inner beam
LG2 : Half of the length of the y dimension of the inner beam
LG3: Thickness of the object

Fig. 10 show the geometric variables LG1, LG2 and LG3 on the beam 1-pattern 1.
The outer section dimensions are kept, by principle, unalterered.

Figure 10 Geometric variables of the FEM model used on the design optimization
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It is assumed that, from an industrial point of view, the whole beams shall
be constructed with sheet of the same thickness. The aim is to obtain a set of
reinforcements that is industrially easy to assemble.

4.3. The objective function

In relation to the code previously developed, a new objective function was developed.
As the aim of this work is to obtain light and stiff structures, 2 terms must be
included in the function: A mass term and a deflection term:

O(m, δ) = f(m) + f(δ) (7)

where:
O(m, δ is the objective function,
f(m) is a function of the mass,
f(δ) is a function of the deflection.

As weights must also be included, in order to give more or less importance to
each one of those terms, eq. becomes:

O(m, δ) = W1f(m) +W2f(δ) (8)

where:
W1 is the weight relative to the mass,
W2 is the weight relative to the deflection,
In this work W1 = W2 = 0.5.
The expression of f(m) is given by the ratio of the sum of the element masses

of the model being optimized and of the sum of the element masses of the initial
model:

f(m) =

n∑
j=1

Mj

n∑
j=1

M i
j

(9)

where:
Mj is the element mass obtained in each nodal point and in each iteration,
M i

j is the element mass obtained in each nodal point in the initial model.
The same logic also applies to the term f(δ):

f(δ) =

n∑
j=1

|δj |

n∑
j=1

|δij |
(10)

where:
δj is the nodal deflection obtained in each nodal point and in each iteration,
δij is the nodal deflection obtained in each nodal point in the initial model.

The absolute value of the deflections are sum because in torsion, the deflections
on the points located at the edges are of opposite direction. What is important
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is the sum of those effects. In bending the absolute value has no influence on the
results, because the deflections in all points have the same direction. However, for
a question of coherence, the absolute value was also applied.

The ratio ensures that the objective function complies with the fmincon function
in terms of function minimization. In fact, when the mass or deflection of the model
being optimized decreases in relation to the initial model, the objective function also
decreases, going towards the aim of objective function minimization. Substituting
Eq. (1) and (4) on Eq. (2), it comes:

O(m, δ) = W1

n∑
j=1

Mj

n∑
j=1

M i
j

+W2

n∑
j=1

|δj |

n∑
j=1

|δij |
(11)

This objective function was implemented in the MATLAB code.

5. Results

5.1. Optimization results

In order to improve the mechanical behavior of the studied models, optimization
processes were used. These optimization processes use the objective function defined
by (11), according to the aims of the project. In this optimization process, the basis
is an initial model with the same values of LG1, LG2 and LG3, as shown in the
Fig. 10. The FEM results of the initial and optimized models are compared with
the HSS beam. The aim of the optimization routine is to minimize the objective
function, to be a positive real number the closest possible to 0. The objective
function value starts in 1 in every case, due to the fact that on the first iteration,
the current model is the same as the initial model.

5.2. Bending

In the Fig. 11 one can see the final objective function value, obtained in the opti-
mization routines for all beams, using (11) under bending loadings.

As it can be observed, in the models A1, pattern 1 and B2, pattern 1, the
optimization was not able to get any improvement. This is due to the fact that any
variation in the deflection term has a similar variation in the mass, but in opposite
way. The final objective function value, along with the final variables values, of
the variables already presented in the Fig. 10, is shown in the table 1 for bending
loadings.

5.2.1. Torsion

In the Fig. 12 one can see the final objective function value, obtained in the opti-
mization routines for all beams.
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Figure 11 Final values of the objective function under bending loads

Table 1 Final variable and objective function values obtained on the optimized models for bending
loadings

Bending A1 A2 A3 B1 B2 B3
Pattern 1
PRLG1f 4.86 1.80 1.80 4.46 4.51 4.09
PRLG2f 7.73 9.26 8.32 7.53 7.52 7.46
PRLG3f 3.74 2.79 2.63 2.94 3.03 3.04
Final objective 0.98 0.83 0.79 1.00 1.00 0.98
Pattern 2
PRLG1f 1.80 2.17 1.80 4.50 4.50 4.57
PRLG2f 10.15 7.61 11.90 7.49 7.49 7.52
PRLG3f 2.79 2.99 2.65 3.14 3.14 3.15
Final objective 0.87 0.89 0.81 1.00 1.00 1.00
Pattern 3
PRLG1f 4.50 2.17 1.80 4.50 3.47 2.85
PRLG2f 7.51 9.02 9.52 7.58 8.20 8.84
PRLG3f 3.61 2.76 2.58 3.15 3.30 3.05
Final objective 0.97 0.86 0.80 1.00 0.98 0.96
Pattern 4
PRLG1f 1.80 2.17 1.80 4.48 3.95 4.50
PRLG2f 8.05 7.70 8.36 7.56 9.19 7.55
PRLG3f 2.75 3.55 2.76 3.17 3.14 3.26
Final objective 0.80 0.85 0.77 1.00 0.97 1.00
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Figure 12 Final values of the objective function under torsion loads

Table 2 Final variable and objective function values obtained on the optimized models for torsion
loadings

Torsion A1 A2 A3 B1 B2 B3
Pattern 1
PRLG1f 4.54 6.95 7.20 7.20 7.20 7.20
PRLG2f 7.51 12.00 12.00 11.41 8.36 12.00
PRLG3f 3.01 3.36 3.50 3.34 3.18 2.38
Final objective 1.00 0.87 0.79 0.84 0.86 0.81
Pattern 2
PRLG1f 7.20 7.20 7.20 7.20 7.20 7.20
PRLG2f 6.95 3.00 7.25 6.86 6.34 7.81
PRLG3f 3.47 3.34 3.29 3.26 3.13 1.54
Final objective 0.88 0.86 0.89 0.87 0.87 0.93
Pattern 3
PRLG1f 4.50 7.20 7.20 4.50 7.20 7.20
PRLG2f 7.62 8.45 8.44 7.38 10.60 12.00
PRLG3f 3.24 4.05 3.34 3.23 3.42 3.71
Final objective 0.99 0.92 0.92 1.00 0.90 0.88
Pattern 4
PRLG1f 4.28 6.22 3.42 4.50 4.49 4.78
PRLG2f 12.00 12.00 12.00 7.55 12.00 7.71
PRLG3f 3.42 3.71 3.61 3.16 3.62 3.22
Final objective 0.95 0.93 0.90 1.00 0.94 0.99
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The models A3 and B3 are the models that show the best results: an improve-
ment of near 20%. These values were obtained by the application of (11) using the
optimized and initial models, and were calculated numerically via MATLAB. The
final objective function value, along with the final variables values, of the variables
already presented in the fig. 10, is shown in the table 2 for torsion loadings.

5.3. ANSYS results

In order to assess the effectiveness of the code and of the optimized models, the
initial and the optimized models were run on ANSYS to collect FEM results. The
difference between the initial and final models are the design variable values, mod-
ified by the optimization program. The mass is also affected with those changes.
Mass and displacements in the y direction were collected in the FEM software AN-
SYS for bending loadings and mass, displacements in the y direction and twist angle
(rotation around the z axis) were collected for torsion loads. Results for both the
initial and optimized models are presented.

5.3.1. Relative results: Comparison with a simple hollow-box beam

5.3.1.1 Factors analyzed

The effectiveness of both initial models was assessed by the comparison of the
effective mechanical behavior with a reference model, which is the HSS beam (Fig.
3), by means of analytic formulae. In bending, deflections were studied, while in
torsion, both deflections and twist angle were studied. Parameters which quantify
the effectiveness under bending and torsion combined loadings are also presented,
for both initial and final models, being (18) and (19). The presented formulae are
shown in the Tab. 3.

Table 3 Relative results: Comparison with HSS. B is the abbreviation for bending loadings, and
T is the abbreviation for torsion loadings

Equation/loadings B T

Impδ∗mi(%) = [a(δy)∗m]HSS−[a(δy)∗m]i
[a(δy)∗m]i

∗ 100% (14) Yes Yes

Impδ∗mf
(%) =

[a(δy)∗m]HSS−[a(δy)∗m]f
[a(δy)∗m]f

∗ 100% (15) Yes Yes

Impθ∗mi(%) = [a(θ)∗m]HSS−[a(θ)∗m]i
[a(θ)∗m]i

∗ 100%. (16) No Yes

Impθ∗mf
(%) =

[a(θ)∗m]HSS−[a(θ)∗m]f
[a(θ)∗m]f

∗ 100%. (17) No Yes

Impδ∗mitotal(%) =
[(

[a(δy)∗m]HSS−[a(δy)∗m]i
[a(δy)∗m]i

)
bend

+
(

[a(δy)∗m]HSS−[a(δy)∗m]i
[a(δy)∗m]i

)
tors

]
(18)

Yes

Impδ∗mf total(%) =
[(

[a(δy)∗m]HSS−[a(δy)∗m]f
[a(δy)∗m]f

)
bend

+
(

[a(δy)∗m]HSS−[a(δy)∗m]f
[a(δy)∗m]f

)
tors

]
(19)

Yes

where:

[a(δy)∗m]HSS is the global maximum y deflection as measured on the two points
multiplied by the total mass of the model for the reference model (HSS),
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[a(δy) ∗m]i is the global maximum y deflection as measured on the two points
multiplied by the total mass of the model for the initial models,

[a(δy) ∗m]f is the global maximum y deflection as measured on the two points
multiplied by the total mass of the model for the final models,

[a(θ) ∗m]HSS is the global maximum twist angle as measured on the two points
multiplied by the total mass of the model for the reference model (HSS),

[a(θ) ∗ m]i is the global maximum twist angle as measured on the two points
multiplied by the total mass of the model for the initial models,

[a(θ) ∗ m]f is the global maximum twist angle as measured on the two points
multiplied by the total mass of the model for the final models.

5.3.1.2 Results analysis
In order to compare the relative effectiveness of the solutions with the ultimate

aim to reach the best solution, the formulae of the table 3 were applied analytically
to the results collected from the models in ANSYS. In the Fig. 13, one can see the
effective mechanical behavior results under bending loadings in comparison with
a model of reference for all beams using (14).

Figure 13 Effective mechanical behavior of the initial models in comparison with the simple
hollow-box beam under bending loadings for beams without transversal reinforcements

According to the results shown in the fig. 13, one can see that the best models
are the models B1, B2 and B3 having the pattern 4, with improvements ranging
from 7000% to near 8500%. There is an improvement for all models, although the
model B1, pattern 4 shows the best results, showing an improvement of near 8500%.
The worst models are the models A1, A2 and A3, which are worse than any of the
B beams for every pattern.

In the Fig. 14, one can see the effective mechanical behavior of the optimized
models in comparison with the simple hollow-box beam under bending loadings

According to the results shown in the Fig. 14, one can see that the best models
are the B models having the pattern 4, with improvements ranging from 7000% to
8500%. The A beams show an improvement of near 6000%.
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Figure 14 Effective mechanical behavior of the optimized models in comparison with the simple
hollow-box beam under bending loadings for beams without transversal reinforcements

According to the Fig. 14, the best models are the models of the pattern 4 with
improvements ranging from 7000% to near 8500%, approximately. For both A and
B models, there is an improvement for all models.

In the Fig. 15, one can see the effective mechanical behavior results under
torsion loadings in comparison with a model of reference for all beams, using (14).

Figure 15 Effective mechanical behavior of the initial models in comparison with the simple
hollow-box beam under torsion loadings for beams without transversal reinforcements

According to the results shown in the Fig. 15, there is a worsening for all models,
although the pattern 4 shows the best results for all beams in comparison with the
other patterns. The worst models are all the models of the pattern 1, with an
improvement ranging from -70% to -60%. The beam B1 shows the best results for
every pattern. The best model is the Beam B1 pattern 4, with an improvement of
-10%.
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In the Fig. 16, one can see the effective mechanical behavior results under torsion
loadings in comparison with a model of reference for beams without transversal
reinforcements, using (15).

Figure 16 Effective mechanical behavior of the optimized models in comparison with the simple
hollow-box beam under torsion loadings for beams without transversal reinforcements

According to the results shown in the Fig. 16, there is a worsening of the
effective mechanical behavior for all the initial novel beams compared with simple
hollow-box beams. One can see that the best models are the models of the pattern
4 with improvements ranging from -20% to near 0, approximately. The worst model
is the models A1, pattern 1, for which there is an improvement of -60%. In the Fig.
17 one can see the effective mechanical behavior results under torsion loadings in
terms of the twist angle in comparison with a model of reference, using (16).

Figure 17 Effective mechanical behavior of the initial models in terms of the twist angle in
comparison with the simple hollow-box beam under torsion loadings for beams without transversal
reinforcements
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According to the results shown in the Fig. 17, one can see that the best models are
the models of the pattern 4 with improvements ranging from -98.5% to near -98.2,
approximately. The beam A1 is the best for every pattern, followed by the beam
B1. There is a worsening for all models without transversal reinforcements in terms
of the effective twist angle. In the Fig. 18 one can see the effective mechanical
behavior results under torsion loadings in terms of the twist angle in comparison
with a model of reference, using (17), respectively.

Figure 18 Effective mechanical behavior of the optimized models in terms of the twist angle in
comparison with the simple hollow-box beam under torsion loadings for beams without transversal
reinforcements

According to the results shown in the Fig. 18, there is a worsening for all models
without transversal reinforcements in terms of the effective twist angle. One can
see that the best models are the models of the pattern 4 with improvements ranging
from near -98.4% to near -97.8, approximately. Of those models, one can see that
the best model is the Beam A2 pattern 4 with a worsening of -97.8%, approximately.

In the Fig. 19, one can see the effective mechanical behavior results in terms of
total improvement in comparison with a model of reference, using (18).

According to the Fig. 19, the best models are the B models of the pattern
4 with improvements ranging from 7000% to near 8000%, approximately. One
can see that the B models are better than the A models for every pattern. The
results for the A beams vary from between near 2000% for every A beam, for the
patterns 1,2 and 3, to near 3000% for the pattern 4. In the fig. 23, one can see the
effective mechanical behavior results in terms of total improvement in comparison
with a model of reference, using (19), respectively.

According to the Fig. 20, the best models are the B models of the pattern 4 with
improvements ranging from 7000% to near 8000%, approximately. For all patterns,
the B beams perform better than the A beams.
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Figure 19 Total improvement of the initial models in terms of deflection in comparison with
the simple hollow-box beam considering both bending and torsion loadings for beams without
transversal reinforcements

Figure 20 Total improvement of the optimized models in terms of deflection in comparison with
the simple hollow-box beam considering both bending and torsion loadings for beams without
transversal reinforcements

6. Results discussion

The results obtained under bending loadings prove that the developed beams are
very effective under bending loadings. In fact, the sandwich reinforcements at the
top and at the bottom dramatically increase the resistance moment and the inertia
moment, while keeping the mass to a minimum. Under torsion loadings, the beams
do not perform so well under the developed parameters due to the fact that the
highest reinforcement density is located at the top and at the bottom. The rein-
forcement on the sides are more important for torsion, due to the fact that they
are oriented transversally and diagonally, and, therefore, have an influence on the
inertia moment under torsion loadings. The optimization procedure is shown to be
very effective in optimizing most of the models, improving its effective mechanical
behavior, both in bending and torsion loadings. The developed parameters (Tab. 3)
allowed to evaluate the effectiveness of the optimization code and of the objective
function, and also the evaluation of the effectiveness of the mechanical behavior of
both initial and optimized models in terms of the Finite Element Method results
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obtained in ANSYS MECHANICAL APDL. The developed beams are very inter-
esting for applications where bending loadings act isolate or coupled with torsion,
in the case that the torsional component of the loadings have a less important effect
than the bending component.

7. Conclusions

The following conclusions can be drawn from this work:

-The objective function developed is effective in improving the mechanical be-
havior of the FEM models while keeping the mass to a minimum both in torsion
and in bending loadings. This can be proved by the results comparison between
initial and optimized models:

-The models with transversal ribs are shown to be quite more effective than the
ones without in terms of the total improvement.

-The best beam without transversal reinforcements after optimization is the
Beam A1, pattern 4, with improvement close to 8500%.

-The best beam with transversal reinforcements is also the beam 1, Pattern 4.

- The novel beams are very effective in bending, while not so much under torsion
loadings. The behavior under torsion loadings may be in reality better than in
this study, due to the fact that one is comparing results on the point of loading
application and that loading point is weaker in the novel beams than in the simple
beams. For distributed loads, as it may happen in reality, it is expected that the
load distribution will reduce the effect of the concentrated load.

-The studied beams can, therefore, be interesting for industrial applications,
mainly in applications with mobile parts, where there is the need of light and stiff
beams.
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