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This paper presents a study about the effects of initial porosity and stress triaxiality
on void growth and coalescence in High–density polyethylene (HDPE) material. Two
approaches are used to modulate the representative material volume: The first one is a
unit cell with a spherical void at the center (Voided cell model), and the second is a unit
cell containing the same void fraction of volume and obeying to the constitutive relation
of Gurson–Tvergaard–Needelman (GTN model). Detailed analyses of finite element gave
us: the equivalent stress–strain response, the void growth and coalescence behavior of the
representative material volume. Results show that the stress triaxiality and the initial
void volume fraction are strongly effective and depended on.
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1. Introduction

The understanding of the intrinsic mechanical behavior of semi crystalline poly-
mers is of a prime importance in the design of components made of it because of
its frequent use nowadays in engineering components that may lead to experience
complex mechanical loadings. These few past decades, considerable attention has
been focused on the plastic deformation of polymers and it has been widely inves-
tigated by [1–5]. As known the parameters that influence solid polymers the most
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are: The temperature, the strain rate, the strain, and the type of loading conditions,
which means the stress triaxiality. Some experimental devices were proposed in or-
der to define the effects of stress triaxiality on solid polymer’s mechanical properties
(e.g. yield strength or ultimate properties) by [6, 7]. These systems are as complex
as it seems very difficult to obtain any intrinsic stress-strain curves.

Gurson and Sànchez et al [8, 9] proposed many phenomenological laws and other
studies have been based only on the mechanical behavior in largescale deformation
[10–14]. It is now recognized that three successive courses that are nucleation (or
germination) of the cavity, their growth, and coalescence of voids at a later stage of
the deformation lead to the damage of ductile materials like polymers.

In the same time, and in order to understand the mechanisms of voids growth
and coalescence and to develop micro-mechanical models for better describing the
ductile fracture of polymers, research efforts have been devoted. The wellknown
micromechanical model proposed by Gurson [8] and phenomenologically extended
by [15–17] for which the damage is expressed as the porosity due to spherical micro
voids is particularly well suited for modeling porous ductile metals. The understand-
ing of the influence of porosity in ductile materials has been ensured by detailed
micromechanical analysis for characteristic cell models with known porosity.

Therefore, accounting for void coalescence in constitutive damage models is gen-
erally considered as obligatory to describe the fracture of ductile solids [17]. Most
of the several models of void coalescence proposed by [18, 19] are dedicated to
coalescence by internal necking.

In contrast, and in order to investigate the behavior of porous solids, finite
element cell computations are commonly used, see e.g. in [16, 20–24]. Such simula-
tions proved to be an important tool in allowing a better understanding of the micro
mechanisms of failure in ductile media even though it is restricted to materials with
periodic microstructure.

This paper describes an application of a finite element analysis in the prediction
of ductile fracture of the standard axisymmetric cell model which has been employed
by several investigators in early studies [15, 16, 20, 25]. The analyses were based
on the cell model with special boundary conditions allowing a relatively simple
appraisal of a full three-dimensional array of voids, without having to solve the full
3D numerical problem. Detailed fully three-dimensional computations were also
performed in [26–29]. The cell model used in these investigations, is a cylindrical
representative volume element (RVE) containing initially a spherical void subjected
to an axisymmetric loading, generally with predominant axial stress. Additionally,
during the whole process of deformation of the cell model the overall stress triaxiality
is kept constant. This geometry was in fact an approximation of a cylindrical
volume with some hexagonal basis, which can be considered as an elementary cell in
a periodically voided material. Direct comparisons are made between the numerical
obtained stress-strain and void growth response of the voided cell model and cell
model using GTN constitutive relation.

The polymer investigated in this work, is the High-density polyethylene (HDPE).
It is one of the most used polymers in the world, for its large variety of industrial
applications, in particular for packaging industries of Building and Public Works.
The HDPE is a thermoplastic polymer with good strength, toughness and resistance
to acids as well as aging.
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2. Material and numerical methods

2.1. Material characteristics

A model type of HDPE material characterizes the void matrix material. The physi-
cal properties are: density 0.9 g/cm3, Melt–Mass–Flow = 1.2 g/10 min, Molecular–
Weight 310000, Glass Transition Temperature = 84oC, Melting Point = 180oC, and
crystallinity index ≈ 66 %. The true strain at break is around 250%. The Young’s
modulus E obtained from the initial slope is equal to 850 MPa. The yield stress σy,
defined as the intersection point between the tangent at the origin and the tangent
of the plateau before hardening, is equal to 25 MPa.

2.2. Computational Unit Cell Model

Axisymmetric geometries are efficient and allow for a good estimation of damage
evolution and fracture strains that is why cell studies have focused on their use [18,
20, 25, 29]. It should be emphasized that axisymmetric models provide a lower, and
therefore, more conservative estimate for damage evolution and the fracture strain
(coalescence) than their 3D counterparts.

Large-strain computations of void growth and coalescence have been carried out
in the finite element code. An axisymmetric model of a cylindrical cell containing
a single initially spherical void at its center is considered. See Fig. 1.

Figure 1 Micromechanical modeling from unit cells and 2D approximation

The quantities calculated locally at each point of the cell are of a microscopic scale.
The macroscopic quantities correspond to the mean of the volume of the cell. Due to
the symmetries of geometry and loading, only one quarter of the cell is considered.
A load is applied to these two outer faces.
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The axial macroscopic constraints Σyy and radial Σxx are formulated as follows:

Σxx =
Fx

4πHR
(1)

Σyy =
Fy

πR2

where Fx and Fy are respectively the reactions at the level of the lateral face and the
base of the REV (Representative Elementary Volume). H and R are respectively the
half height and the radius of the unit cell. Then the average macroscopic constraints
Σm and equivalent Σeq are given in the axisymmetric case by:

Σm =
1

3
(2Σxx +Σyy)

(2)

Σeq = |Σyy − Σxx|

The axial macroscopic deformations Eyy, radial Exx and equivalentEeq are defined
by the following expressions:

Exx = ln

(
R+ uxx

R

)
Eyy = ln

(
H + uyy

H

)
(3)

Σeq =
2

3
|Eyy − Exx|

where uxx and uyy are the components of the displacement in the x and y directions.
There is two ways to calculate the volume fraction of voids, either the numerical
integration along the points of the vacuum surface, or the use of the approximate
formula proposed by Koplik and Needleman [20].

f = 1− (1− f0)

[
1 +

3 (1− 2ν)

E
Σm

]
V 0
tot

Vtot
(4)

where V 0
tot, Vtot, f0 and f denote respectively the initial and final volumes and the

initial and final porosities of the cell. One of the difficulties of the numerical study
of a REV using the model of the elementary cell is the maintenance of the triaxiality
to a constant value during loading. In the case of an implicit calculation, the RIKS
method can be advantageously exploited to satisfy this condition.
We present in the following a technique of explicit cell computation proposed by
Siad et al. [30] allowing to maintain a constant triaxiality during the deformation.
This constraint is satisfied after a number of calculations. The loading is applied
this time via a displacement fixed on the upper corner of the cell as depicted in
Fig. 2.
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Figure 2 Loading of the unit cell using a linear stiff elastic truss

The axisymmetric loadings of the unit cell are for all numerical simulations consid-
ered with dominant axial traction (along the y-axis) and a constant triaxiality T
equal to (0,33; 0,44; 0,6; 1).
There are few techniques in the cell calculations, which make it possible to main-
tain the constant triaxiality during the loading. The RIKS algorithm is simple to
use in the case considered here but nonetheless efficient [31]. However, its use can-
not be coupled with an explicit integration approach due to the role of the time
parameter. On the other hand, in its current version, Abaqus standard (Implicit
analysis) excludes the coalescence parameters in the Gurson potential. In contrast,
Abaqus/Explicit allows us to do this. Fig. 2 shows schematically a cell loading
which allows, by successive adjustments during the computation, to tend towards
the situation where the triaxiality is kept constant during its evolution. An elastic
bar PQ of initial length L0, of constant cross section Sb and inclined by an initial
angle φ0 relative to the horizontal, is fixed to the upper right corner P of the cell.
The cell is loaded by means of the bar PQ for which the position in the plane (x, y)
of its end Q is imposed so as to maintain the triaxiality at the desired value. An
adequate displacement uQ of its end Q is imposed. We denote by uP and uQ the dis-
placements of the extremities P and Q whose decompositions along the directions
(x, y) are written as:

uP = uP
x ex + uP

y ey

(5)

uQ = uQ
x ex + uQ

y ey

The position of the end Q is then given by:

XQ = R0 + uP
x + L cosφ

(6)

Y Q = H0 + uP
y + L sinφ
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where L is the current length of the bar and the angle φ is such that:

cosφ = cosφ0 −
uQ
x − uP

x

L0

(7)

sinφ = sinφ0 −
uQ
y − uP

y

L0

with φ0 the value of the angle φ corresponding to uP = uQ = 0. The current value
of φ can also be calculated by:

tanφ =
Y Q − Y P

XQ −XP
=

L0 sinφ0 + uQ
y − uP

y

L0 cosφ0 + uQ
x − uP

x

(8)

We denote by Σr axial stress acting on the bar PQ. The main and equivalent
macroscopic constraints acting on the cell are given by:

Σxx =
ΣrSr cosφ

2π (R0 + uP
x )
(
H0 + uP

y

)
Σyy =

ΣrSr sinφ

π (R0 + uP
x )

2 (9)

Σeq = |Σyy − Σxx|

By means of a first approximation deduced from the hypothesis of invariance of the
global volume of the cell during loading, it is possible to establish a relation between
the Triaxiality T, the angle φ and the vertical displacement of the point P. Indeed,
by definition we have:

T =
Σm

Σeq
=

1

3

(
Σyy + 2Σxx

|Σyy +Σxx|

)
=

1

3

(
1 + 2α

|1− α|

)
(10)

with α = Σxx/Σyy.
The substitution of equation (IV.9) in the expression of α leads to:

α =
1

2

1

tanφ

(
R0 + uP

x

)(
H0 + uP

Y

) =
1

2

L0 cosφ0 + uQ
x − uP

x

(
R0 + uP

x

)
L0 sinφ0 + uQ

y − uP
y

(
H0 + uP

y

) (11)

Moreover, in the absence of porosity, Koplik and Needleman [20] stipulated that,
due to Poisson’s effect, the overall volume remains constant throughout the load-
ing process. We accept, as a first approximation, the validity of this hypothesis
for a porous matrix at least at the beginning of the loading of the cell. In this
circumstance, the components satisfy the relation:

R2
0H0 =

(
R0 + uP

x

)2 (
H0 + uP

y

)
(12)

That expresses explicitly uP
x in function of uP

y as we have:

uP
x = uP

x

(
uP
y

)
= R0

[(
H0

H0 + uP
y

)1/2

− 1

]
(13)
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The transfer of equation (12) into equation (6) leads to

XQ =
R0

√
H0(

H0 + uP
y

)1/2 + L cosφ

(14)

Y Q =
(
H0 + uP

y

)
+ L sinφ

Therefore:

uQ
x = R0

√
H0

H0 + uP
y

+ L cosφ− (R0 + L0 cosφ0)

(15)

uQ
y =

(
H0 + uP

y

)
+ L sinφ− (H0 + L0 sinφ0)

During the loading of the cell, the components of the displacement of the point
P, the triaxiality T through the parameter α and the angle φ are linked by the
relation:

tanφ =
1

2α

(
R0 + uP

x

H0 + uP
y

)
=

1

2α

(
R0

√
H0(

H0 + uP
y

)3/2
)

(16)

Thus, the initial value φ0 is fixed by expected triaxiality (parameter α) and the
geometry of the outer contour of the cell (H0 and R0) through the relation

tanφ0 =
1

2α

(
R0

H0

)
(17)

In order to analyze the behavior of a porous HDPE cell, a single spherical cavity
is placed at the center of the latter. The volume fraction of voids f is equal to the
ratio Vf/V, V is the volume of the whole cell and Vf that of the vacuum. The
dimensions of the cell are such that R0 = H0 = 1 mm. The initial volume fraction
of voids makes it possible to estimate the initial radius of the cavity in the unit cell.
In order to analyze the influence of the triaxiality of the stresses T and the volume
fraction of voids f, cells with different initial porosities f0 (1%, 5% and 10%) were
considered and stressed under different triaxialities T.

2.3. GTN constitutive model

Ductile fracture is associated with plastic instability characterized by nucleation,
growth, and coalescence of voids. The original Gurson model [8] and some other
developed models by [32,33] take into consideration the effect of micro voids on
plastic performance but only in condition that hydrostatic stress in length affects
the yield surface while we suppose that the yielding is independent of the hydrostatic
stress as for the classical plasticity theory. The GTN damage model can be described
as the following:

f =

(
q

sm

)
+ 2q1f

∗ cosh

(
−3q2p

2sm

)
− (1 + q3f

∗2) (18)
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where q =
√

2
3SijSij is the macroscopic von Mises equivalent stress, p = 1

3σkk is the

hydrostatic stress, Sij = σij − 1
3σkkδij is the deviatoric components of the Cauchy

stress, δij is the Kronecker delta, and σm is the equivalent stress of the matrix
material; f* denotes the total effective void volume fraction which accounts for the
decrease of the materials stress-carrying capability due to void coalescence[34]. The
fitting coefficients q1, q2, and q3 introduced by [15,16] stand for void interaction
effects, and normally, q1 = 1.5 and q3 = q21 . When all the three fitting parameters
equal to 1, the GTN model reduces to the original Gurson model.

Based on the principle of the equivalent plastic work, we can obtain the matrix
equivalent plastic strain rate from the microscopic view as follows:

σ : ε̇p = (1− f) σ̄m. ˙̄εplm

(19)

˙̄εplm =
σ : ε̇p

(1− f) σ̄m

Here, ˙̄εplm is the accumulated equivalent plastic strain rate of the matrix material,
ε̇p is the macroscopic plastic strain rate, and f is the void volume fraction.

The modified void volume fraction f* used in the GTN damage model is a piecewise
linear function of f and can be defined as in [17].

f∗ =


f f ≤ fc
fc +

1/q1−fc
fF−Fc

(f − fc) fc < f ≤ fF
1/q1 f > fF

(20)

where fc is the initial void volume fraction when void coalescence starts and fF
represents the value of void volume fraction at final fracture. The variation in void
volume fraction f depends on growth of pre-existent voids and nucleation of new
voids. The rate form relation between them can be expressed as ḟ = ḟgrowth +

ḟnucleation. Assuming that the matrix material is incompressible, the void volume
fraction rate from growth of existing voids is believed to be related to the macro-
scopic plastic volume and can be represented by:

ḟgrowth = (1− f) ε̇p : I (21)

where I is the second-order unit tensor. In this work, we assume that the void
nucleation is strain induced and we adopt the plastic strain controlled nucleation
rule by chu and Needleman [35]. Therefore, the void volume fraction rate from new
void nucleation can be expressed as:

ḟnucleation = A ˙̄εplm =
fN

SN

√
2π

exp

[
−1

2

(
ε̄plm − εN

SN

)2
]
˙̄εplm (22)

where fN is the volume fraction of nucleating particles, εN is the mean equivalent
plastic strain when voids nucleate, and SN is the corresponding standard deviation.
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3. Results and discussion

A finite element program that uses a finite strain has been used in the numerical
analyzes. The RVE considered in this study has an equal initial length with the
initial radius of the cell. We only needed to modulate one quarter of the region be-
cause of the symmetry. We also used a typical finite element mesh in the calculation
that is presented in the Fig. 3.
We succeed to reproduce the results of macroscopic stress–strain behavior, plastic
deformation and evolution of the void volume fraction of a voided cell initially put
forth by Koplik and Needleman [20] by applying the numerical procedures presented.

Figure 3 Typical finite element mesh in the calculation

This latter allows the validation of our numerical implementation. Here the conjoint
influence of stress triaxiality and initial void volume fraction on void growth and
coalescence is examined.
Three initial void volume fractions, f0 = 0, 01, 0.05, 0.1 and four different triaxiality
levels ranging between T = 0,33 and 1 (The values of f0 and T chosen cover the
range of initial porosity and stress triaxiality used in common structural applica-
tions).
Fig. 4, Fig. 5 and Fig. 6 show the influence of the triaxialities of the stresses on the
response of the unit cell and on the GTN model for different initial porosity. Two
phases are highlighted; Increase of the stress up to a maximum then a monotonous
decrease. Moreover, it is clear that the different phases of the law of behavior are
affected by the volume fraction of voids imposed initially. In particular, the higher
the initial porosity, the lower the plastic flow limit, the structural hardening and the
maximum stress. Furthermore, by comparing Figures 4, 5 and 6, it appears that the
effect of the initial porosity on these different phases decreases with the decrease in
the triaxiality of the stresses for voided cell and the material element obeying the
GTN constitutive relation. It should be noted that the plastic instability leading
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to the sudden drop in stress occurring at the end of the deformation process could
be attributed to the phenomenon of coalescence due to the ligature of the matrix
ligament of the unit cell. The stress drop rapidity follows the initial vacuum rate
imposed on the cell. The rate of void growth is affected by f0. Benzerga and
Leblond [36] show that the rate of void growth decreases, and therefore the strain
to coalescence increases, with decreasing f0.

Figure 4 Equivalent stress versus equivalent strain for f0 =1%

Figure 5 Equivalent stress versus equivalent strain for f0 =5%

Fig. 7, Fig. 8 and Fig. 9 show the variations of the volumetric strain as a function
of the equivalent strain for voided cell and the material element obeying the GTN
constitutive relation. We observe that the volume deformation is very low in the
elastic part (volume deformation due to the effect of the Poisson’s coefficient) and
then begins to increase from the beginning of the plasticity at first moderately
pedantic the growth phase and then abruptly during the period of coalescence.
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Figure 6 Equivalent stress versus equivalent strain for f0 =10%

Moreover, the increase of the initial volume fraction of voids implies greater volume
deformation which takes an important part of the total deformation. The general
trend is similar. However, the instability phase is more pronounced for low volume
fractions of vacuum and / or low triaxialities of the stresses.

We observe for the three triaxialities (T = 0.33, T = 0.44, T = 0.6) a very good
correlation of the responses with the GTN model and the unitary cell for f0 = 0.1
and f0 = 0.05. During the stage of growth of the cavities, while the stress increases
regularly as a function of the deformation, the volume deformation evolves only
slowly to a critical value which corresponds to the beginning of coalescence where
the material completely loses its rigidity.

However, the volume deformation does not increase with the same tendencies. This
can be attributed to the effect of stress triaxiality, which controls the rate of growth
of voids. Let us note finally that one of the advantages of the simulation with
a GTN model is that we can predict the behavior of the HDPE in its entirety and
until its rupture, which means until the material can no longer support the Load.

The analysis of the stress and strain fields inside several void cells has shown that
voids start interacting with each other well before the onset of void coalescence.
Fig. 10 and fig. 11 compare the critical equivalent stress and strain obtained at the
moment of the coalescence as a function of the triaxiality for the different porosities
in all cases. In general, stress triaxiality has a negative effect on the coalescence. It
is interesting to observe that the void have a strong influence on the reduction of
the coalescence.

As shown in Fig. 11, critical deformation evolves non-linearly with the constrained
triaxiality and this takes place whatever the initial porosity imposed for voided
cell and the material element obeying the GTN constitutive model. So, the effect
of triaxiality on the critical stress is marked by an evolution that seems rather
non-linear.
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Figure 7 Void volume fraction versus equivalent strain for f0=1%

Figure 8 oid volume fraction versus equivalent strain for f0=5%

Figure 9 Void volume fraction versus equivalent strain for f0=10%
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Figure 10 Critical equivalent stress versus triaxiality

Figure 11 Critical equivalent strain versus triaxiality

As frequently mentioned in the literature [20, 37], the critical porosity at the onset of
coalescence significantly varies with T. At low or intermediate stress triaxiality these
variations don’t allow an accurate constant critical porosity criterion. However, at
large stress triaxiality void growth rates are high enough such that the prediction of
strain at coalescence based on a constant critical porosity may provide a reasonable
approximation.
Fig. 12 plots the critical volume fraction as a function of stress triaxiality for
different initial void volume fractions considered. As we can see, an increase in
stress triaxiality results in an increase in the critical void volume fraction. For
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a fixed stress triaxiality value fc increases significantly with f0. Similar results have
been reported by [18, 38, 39]. The results show that the GTN model allows us to
faithfully reproduce the intrinsic macroscopic mechanical behavior (law of behavior
and volume variation) of the HDPE, until it breaks.

Figure 12 Critical void fraction versus triaxiality

4. Conclusions

We have presented results of calculations on unit cells in order to study the poros-
ity’s effects on the global response of HDPE, for the usual stress–strain response and
for the plastic volume variation as well. The results have also revealed the effect of
triaxiality on global behavior. Based on this study, we can affirm that predictions
give promising results. On the other hand, if the triaxiality is maintained constant
in the case of numerical simulations, this condition is not verified beyond the plastic
limit for axisymmetric specimens, so calculations on porous cell show the interest
of taking into account damage in the constitutive law (GTN). For the lowest initial
porosity imposed on the unit cell, we can observe a good correlation of the predic-
tions with the results for the large deformations where a greater or less difference
appears in the phase of hardening between the curves of the porous unitary cells
and the GTN unitary cells. These differences are due to the initial porosity (arbi-
trarily set at a minimum of 1%). The final break of the material (void coalescence)
is assumed to occur when the porosity reaches a critical value. The deformations
and the critical stresses decrease nonlinearly as the triaxiality increases, whichever
is the considered case. However, the effect is more marked in deformation than in
stress.
This work has for an objective the examination of the relevance of models derived
from the ductile mechanics damage by the growth of voids (coupling plasticity and
damage) in order to predict the mechanical behavior and the damage of the HDPE
(until it reaches break) also its evolution during the loading for given solicitations.
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