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Two dimensions Mathieu equation containing periodic terms as well as the delayed pa-
rameters has been investigated in the present work. The present system represents to
a generalized form of the one-dimension delay Mathieu equation. The mathematical dif-
ficulty for delay the coupled Mathieu equation has been overcome by using the matrices
method. Properties of inverse complex matrices enable us to transform the vector form
of the solvability conditions to the scalar form. Small oscillation about a marginal state
is introduced by using the method of multiple scales. Stability criteria for the com-
plex matrices have been established and lead to obtain resonance curves. The analysis
has been extended so that the delay 2-dimensions Mathieu equation containing weak
complex damping part. Stability conditions and the transition curves that included the
influence of both the delayed as well the complex damping terms has been obtained.
The transition curves are analyzed using the method of harmonic balance. We note
that the delayed higher dimension of the parametric excitation has a great interest and
application to the design of nuclear accelerators.

Keywords: Synchrotron dynamics, time-delayed, two-dimension complex damped Math-
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1. Introduction

There are a number of analytical solutions of Mathieu equation remains to be very
actually for its applications in physical sciences and in engineering. On the other
hand, an analytical solution of Mathieu equation has also the mathematical theoret-
ical aspect. It is determined by the fact that the solution of a number of differential
equations is reduced to the solution of Mathieu equation [1, 2].

There are a lot research in literature has made to understanding of the one-
dimensional dynamic systems which are described by one dimension Mathieu equa-
tion. There are many literatures deal with the analysis and applications of the
Mathieu equation [1-5]. Choudhury and Guha [6], have restricted their attention
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to a particular class of damped Mathieu equation, where the damping coefficient
is a function on time. In their analysis, due to the specific nature of time depen-
dence, they employed the technique that first introduced by Bartucelli and Gentile
[7]. This technique enables them to construct a first-integral and consequently, the
solution of the resulted equation in a manner very close to that of linear harmonic
oscillator. Recently, Turovtsev et al. [8] made an algorithm for calculating the
spectrum and the wave functions of stationary states for one-dimensional rotation
in the basis set of the Mathieu functions.

Recently attentions to dynamical systems having higher dimensions are increased.
The outstanding challenge for future research is the analysis of higher-dimensional
dynamical systems. Such systems are known to exhibit regular and chaotic behavior
at various levels, but their solutions are, of course, more difficult to analyze globally.
An important task in elucidating the properties of such dynamical systems is finding
some of their fundamental stable and unstable periodic solutions, and studying the
motion in their vicinity. Mohamed et al [9, 10] studied a fluid layer subjected to
a periodic force which controlled by two-dimension Mathieu equation having real
coefficients. Classical and quantum modes of coupled Mathieu equations have been
addressed by H. Landa et al [11]. Due to the presence of viscous flow with non-
zero streaming, the coefficients of Mathieu equations becomes of a complex form
El-Dib, Y. O. and Ghaly, A. Y. [12] studied Kelvin–Helmholtz waves propagating
between two magnetic fluids and deriving the Mathieu equation governing the inter-
facial displacement and having complex coefficients. They found stability behavior
near marginal state response.

Two dimension Mathieu equations having complex coefficients has been addressed
by Y. O. El-Dib and R. T. Matoog [13, 14] and Y. O. El-Dib [15] in the area of
electro-hydro-dynamic stability of double interfaces, when they are influenced by
periodic electric field or an oscillatory stationary streaming flow. These authors
discussed some special cases in order to avoid the complexity for this system. They
found stability behavior near marginal state response. S. A. Alkharashi [16] has
deriving two simultaneous Mathieu equations of damping terms having complex
coefficients in the stability of three layers of immiscible liquids. The fluids are
subjected to a uniform horizontal electric field and periodic velocities. Recently,
in (2016) A. R. AlHamdan and S. A. Alkharashi [17] have discussed the instability
of three horizontal finite layers of immiscible fluids in porous media subjected to
a horizontal magnetic field. The problem concerned with a periodic velocity. They
derived two simultaneous Mathieu equations of damping terms having complex
coefficients.

Stability of damped Mathieu’s equation with time-periodic coefficients and time-
delayed Mathieu’s equation has been considered by T. Insperger and G. Stépán
[18] and by N. K. Garg et al [19]. Z. Ahsan et al [20] considered damped Mathieu
equation with two different points delayed. The dynamics of a type of particle accel-
erator called a synchrotron, in which particles are made to move in nearly circular
orbits of large radius. The stability of the transverse motion of such a rotating
particle may be modeled as being governed by Mathieu’s equation. For a train of
two such particles the equations of motion are coupled due to plasma interactions
and resistive wall coupling effects [21]. A. Bernstein & R.H. Rand [22] has address
investigation of coupled Parametrically Driven Modes in Synchrotron Dynamics.
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They studied a system consisting of a train of two particles which is modeled as
two coupled nonlinear Mathieu equations with delay coupling. Recently, in (2016)
the delay-coupled Mathieu equations in synchrotron dynamics have been addressed
by A. Bernstein and R.H. Rand [23]. They investigate the dynamics of the model
having two delay-coupled Mathieu equations. They interested in the form of the
above equations comes from an application in the design of nuclear accelerators.
They used the two-time scales method [15] to study the dynamics for their coupled
Mathieu equations
In present work, we consider a generalized form of the delay-two coupled Mathieu
equations considered by A. Bernstein and R.H. Rand [23]. In order to get a wide ap-
plications and for more generalization, the mathematical model has been extended
to included complex damping coefficients.

2. Mathematical problem

The underlying mathematical problem of 2-dimension Mathieu equation, with a sin-
gle point delay is given below:

d2xk (t)

dt2
+
(
ak + 4εqk cos

2 Ωt
)
xk (t) +

(
aj + 4εqj = cos2 Ωt

)
xj (t)

(1)

εhkxk (t− τ) + εhjxj (t− τ) k ̸= j k, j = 1, 2

where ε is a non-zero small parameter, Ω is a frequency of the external excitation,
q′s are the amplitude of external excitation, t is an independent parameter, a′s are
real constants and hk scales the influence of delay state. Equation (1) represents
2-coupled delayed Mathieu’s equation, which can be introduced into the vector
extension of a standard Mathieu equation as shown below:

d2

dt2
X (t) +

(
A+ 4εQ cos2 Ωt

)
X (t) = εHX (t− τ) (2)

where A, Q and H are non-singular square matrices of 2× 2 type while the vector

X(t) = (x1(t), x2(t) )
T
is of 2× 1 type and the upper T refer to the transposed of

matrix. This system has a periodic solution, in which, the unperturbed form for
the system (2) has the form:

d2

dt2
X (t) +AX (t) = 0 (3)

From the analysis of matrices, solutions for the vector equations (3) may be written
in the following form:

X(t) = Rj

(
πje

iωjt + π∗
j e

−iωjt
)

j = 1, 2 (4)

where Rj is a constant vector of 2× 1 type, πj , j = 1, 2 is a constant of integration
and π∗

j is the complex conjugate of the constantπj . The natural frequency ωj is the
eigenvalues that given by the following characteristic equation:

ω4 − tr (A)ω2 + det (A) = 0 (5)
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These eigenvalues are:

ω2
1,2 = 1

2 tr (A)±
1
2

√
tr2 (A)− 4 det (A). (6)

The necessary and sufficient condition for stability, at this case, is that ω2
j must be

real and positive. It is easily verified from (5) that the restriction of the stability
for the unperturbed equation (3) implies the following conditions:

tr (A) > 0 det (A) > 0 and tr2 (A)− 4 det (A) > 0 (7)

In what follows we try to find an approximate solution for equation (2) about
the periodic solution given by (4). We shall dealing with producing approximate
solution for equation (2) in the non-vanishing of the small parameter ε.

3. Stability analysis when the time-depended in Mathieu equations is
switch on

We shall discuss the stability of (2) using asymptotic expansion treatment. We shall
apply the well-known of the multiple scale method [3]. This method enables us to
discuss the stability of the problem (2).
On applying the method of multiple scales we may use the scale T0, T1 such that
Tn = εnt, n = 0, 1, 2, .... T0 is the variable appropriate to fast variable, and T1

is the slow variable. In addition, the delay time can scaled as τn = εnτ . The
differential operator can now expressed as the partial derivative expansions:

D ≡ D2
0..+ 2εD0D1..+ ..., Dn.. ≡

∂..

∂Tn
(8)

Assuming that ω2
1 and ω2

2 are both real and positive, then the dependent vector
variable X(t) can be expanded in the form:

X(t, ε) = X0(T0, T1) + εX1(T0, T1) + ... (9)

where the vector X0(T0, T1) has been found to be:

X(T0, T1) = Rj

(
πj(T1)e

iωjT0 + π∗
j (T1)e

−iωjT0
)

(10)

While the perturbed vector X1(T0, T1) is given by:

(
D2

0I +A
)
X1(T0, T1) =

−
[(
2iωj + ετHe−iωjτ

)
D1 −He−iωjτ + 2Q

]
Rjπ(T1)e

iωjT0

−Q
(
ei(ωj+2Ω)T0 + ei(ωj−2Ω)T0

)
Rjπj(T1) (11)[(

ετHeiωjτ − 2iωj

)
D1 −Heiωjτ + 2Q

]
Rjπ

∗
j (T1)e

−iωjT0

−Q
(
e−i(ωj−2Ω)T0 + e−i(ωj+2Ω)T0

)
Rjπ

∗
j (T1)

where the unknown function πj (T1 − ετ) is expanded about the un-delayed variable
and used. The most general way to express it in terms of T1 is with a Taylor series:

πj (T1 − ετ) = πj (T1)− ετ D1πj (T1) + ... (12)
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The above equation contains secular vectors that are proportional to the factor
(e±iωjT0). Before eliminating these secular vectors we are in need to distinguish
between several possible combinations of Ω , ω1 and ω2. These cases of Ω near
ωjor near the combinations and 1

2 (ω1 ± ω2) are known as resonance cases. The
non-resonant case arises when Ω away from ω1, ω2 and 1

2 (ω1 ± ω2).

3.1. The non-resonance case

The elimination of secular terms, in equation (11), at the non-resonant case leads
to: (

ετHe−iωjτ + 2iωjI
)
RjD1π +

(
−He−iωjτ + 2Q

)
Rjπ = 0 (13)

with its complex conjugate form. Equation (13) is known as the amplitude equation.
In order to transform the vector equation to a scalar case, one can multiply both

sides of (13) from the left by RT
j

(
2iωjI + ετHe−iωjτ

)−1
. The use of the following

normalized condition is useful:

RT
j Rj∣∣RT

j

∣∣ ∣∣Rj

∣∣ = 1 (14)

Consequently, equation (13) transformed to the following scalar equation:

D1πj(T1) + (pj + ikj)πj(T1) = 0 (15)

where:

Sj =
RT

j

RT
j Rj

(
4ω2

j I + ε2τ2H2 − 4ετωjH sinωjτ
)−1

(16)

Equation (15) has been derived by help of the properties for the inverse of a non-
singular square complex Matrix [24], in which,(

±2iωjI + ετHe∓iωjτ
)−1

=
(
4ω2

j I + ε2τ2H2 − 4ετωjH sinωjτ
)−1

[ετH cosωjτ + i (∓2ωjI ± ετH sinωjτ)] (17)

The amplitude equation (15) is a single first–order differential equation with com-
plex coefficients. It is having the following exponential solution:

πj(T1) = Λje
−(pj+ikj)T1 (18)

where Λj is an arbitrary complex constant and

pj = 2ετ
(
SjHQRj

)
cosωjτ − ετ

(
SjH

2Rj

)
+ 2ωj

(
SjHRj

)
sinωjτ (19)

k±j = ±2ετ
(
SjHQRj

)
sinωjτ ∓ 4ωj

(
SjQRj

)
± 2ωj

(
SjHRj

)
cosωjτ (20)

This solution is in the form of the growth rate. Therefore, the Routh-Hurwitz
criteria [25] enable us to judge the stability of it. According to these criteria, the
stability of the problem in the non-resonant case depends mainly on the negative
real part for the value given in the exponent of (18). Thus the stability constrain, in
the non-resonance case, is found as the scalar quantity pj has positive value. In the
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limiting case for un- delayed two-dimension Mathieu equation, the above condition
will be identically to zero and hence the solution (18) becomes:

πj(T1) = Λj exp .

(
−i

RT
j QRj

2ωj

∣∣RT
j

∣∣ ∣∣Rj

∣∣
)

T1 (21)

This shows that the marginal stability reveals at the non-resonance case and the
presence of the time-delay term plays a damping role in the stability picture under
a certain condition:

2ετ
(
SjHQRj

)
cosωjτ − ετ

(
SjH

2Rj

)
+ 2ωj

(
SjHRj

)
sinωjτ > 0. (22)

3.2. The resonant case of Ω near ωj

The selection of a particular excitation frequency Ω is anticipated mathematically
by introducing a detuning parameter σ in equation (11) to convert the small divisor
term into secular term as follows:

Ω = ωj + εσ (23)

and write:
−i(ωj − 2Ω)T0 = iωjT0 + 2iσ T1 (24)

Using (23) the small-divisor term arising from exp [±i (ω − 2Ω)T0] in equation (11)
can be transformed into a secular term. Then, remove the source of secular terms.
At this stage, the following solvability condition is imposed:

D1πj(T1) +
(
pj + ik+j

)
πj(T1) +

(
p̃j + ik̃j

)
π∗
j (T1)e

2iσT1 = 0 (25)

with its complex conjugate form. This is the scalar amplitude equations governed
the stability behavior at the resonance case. This deferential equation with complex
coefficients and having parametric term associated with the complex conjugate of
the variable πj(T1). Solution of equation (25) can be sought in the form:

πj (T1) = λje
(Θ+iσ)T1 (26)

where λj is a complex constant and Θ is a growth rate. Equation (25) with its
complex conjugate form represents a system of first-order differential equations and
having the characteristic matrix:

(P + iK +ΘI)X(t) = 0 (27)

The eigenvalues for the characteristic exponent is found from the following charac-
teristic equation:

det (P + iK +ΘI) = Θ2 + [tr(P ) + i tr (K)]Θ + [det (P )− det (K)]

+i tr
(
PK−1

)
det (K) = 0 (28)

where the characteristic complex matrix (P + iK +ΘI) having the following parts:
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P =

(
pj p̃j
p̃j pj

)
and K =

( (
k+j + σ

)
k̃j

−k̃j
(
k−j − σ

) )
where p̃j and k̃j are given in the form:

p̃j =
(
SjHQRj

)
ετ cosωjτ (29)

k̃j =
(
SjHQRj

)
ετ sinωjτ − 2ωj

(
SjQRj

)
(30)

The construction of the matrix P is due to the presence of the delay coefficients
as well as the time-delay parameter τ . The absence of the delay influence make
this damping matrix coefficients P tends to zero, consequently, the characteristic
equation (28) controls the marginal state for the stability picture as:

det (K0 −ϖI) = ϖ2 − tr (K0)ϖ + det (K0) = 0, (31)

where K0is the limiting case in the absence of the delay coefficients and it follows
that the characteristic exponential should losing its real part to become Θ = iϖ.
Accordingly, the solutions (26) will transformed to a periodic solutions and the
marginal stability constrain at the present resonance case is that:

tr (K0) > 0 and det (K0) > 0 (32)

In the general case, where damping matrix coefficients P is presented, the character-
istic equation (28) has a quadratic in Θ. It has two different complex roots Θ1 and
Θ2. In ordinary differential equation with complex coefficients, the trivial solution
is asymptotically stable if and only if all roots of the corresponding characteristic
equation have negative real parts. Since the characteristic function is a polynomial,
the well-known Routh-Hurwitz criterion [25] can be used in order to determine the
negativity of the real parts of the roots Θ1 and Θ2 for characteristic equation (28).
A necessary and sufficient condition for the stability of square matrices with com-
plex entries is performed by Michael Y. Li and Liancheng Wang [26]. Thus, if all
the eigenvalues, of the above characteristic equation, have negative real parts then
the stability arises whence:

tr (P ) > 0

and

tr (P )
[
tr (P ) det (P )− tr (P ) det (K) + tr (K) tr

(
PK−1

)
det (K)

]
(33)

−
[
tr
(
PK−1

)
det (K)

]2
> 0

The first condition in (33) leads to pj > 0, which equivalent to the stability condition
at the non-resonance case. Therefore, the critical condition for stability is the
second one in (33). First condition of the above stability criteria (33) depends on
the influence of the amplitude of the parametric force Q and the amplitude of the
delay terms Has well as the delayed parameter τ. The influence of the detuning
parameter σ has been included, only, in the second condition. This condition can
be arranged in powers of the detuning parameter σ as:

σ2 + 2
(
k+j − k−j

)
σ +

[
2p2j +

1
2

(
k+j − k−j

)2 − 2
(
k̃2j + p̃2j

)]
> 0 (34)
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This condition has two zeros, namely,σ1 and σ2. Thus, the instability is found at the
resonance case whence the detuning parameter σ lies inside the open interval(σ2, σ1).
In terms of the frequency Ω, the transition curves separating stable region from
unstable one corresponding to:

Ω = ωj − ε
(
k+j − k−j

)
+ εσ1 + ...,

Ω = ωj − ε
(
k+j − k−j

)
− εσ2 + ....

(35)

The region lies between the two curves represent the unstable (resonance) case,
which impeded through the stable (the non-resonant) case.

3.3. The resonant case of Ω near 1
2 (ω1 ± ω2)

Through this item, we shall consider the positive sign of ω2. Meanwhile, the negative
one may be obtained for replacing this sign in the results. We express the nearness
of Ωto 1

2 (ω1 + ω2) by introducing the detuning parameter δ such that:

Ω = 1
2 (ω1 + ω2) + εδ (36)

Accordingly, we have:

−i (ω2 − 2Ω)T0 = iω1T0 + 2iδT1

−i (ω1 − 2Ω)T0 = iω2T0 + 2iδT1
(37)

At this end, the secular terms appear in equation (11) can be rearranged to intro-
ducing the following two solvability conditions:

D1π1(T1) +
(
p1 + ik+1

)
π1(T1) +

(
p̃12 + ik̃12

)
π∗
2(T1)e

2iδT1 = 0 (38)

D1π
∗
2(T1) +

(
p2 + ik−2

)
π∗
2(T1) +

(
p̃21 − ik̃21

)
π1(T1)e

−2iδT1 = 0 (39)

They are not complex conjugate for each other. The scalar coefficients p̃12, k̃12, p̃21
and k̃21 are:

p̃12 =
(
S1HQR2

)
ετ cosω1τ

k̃12 =
(
S1HQR2

)
ετ sinω1τ − 2ω1

(
S1QR2

)
p̃21 =

(
S2HQR1

)
ετ cosω2τ

k̃21 =
(
S2HQR1

)
ετ sinω2τ − 2ω2

(
S2QR1

) (40)

Equations (38) and (39) represent a coupled system of two different variables π1(T1)
and π∗

2(T1) with matrix coefficient has complex entries. Its solution may be sought
in the following form:

πj (T1) = λje
(Ξ+iδ)T1 and π∗

j (T1) = λ∗
je

(Ξ−iδ)T1 (41)

and the characteristic exponent Ξ at present resonance case is given by (28) except
that Θ is replaced by the exponent Ξ and the coefficient complex matrix becomes:

P =

(
p1 p̃12
p̃21 p2

)
K =

(
k+1 + δ k̃12
−k̃21 k−2 − δ

)



Time-Delay Two-Dimension Mathieu Equation in Synchrotron ... 507

Stability criteria is the same as in the previous section in which the first condition
for stability is p1+p2 > 0, while the critical condition that satisfied at this resonance
case yields the following condition:

C2δ
2 + 2C1δ + C0 > 0 (42)

where the real coefficients C2, C1 and C0 are:

C2 = 2p1p2

C1 = (p2 − p1)
(
−k̃21p̃12 + p̃21k̃12

)
+ 2p1p2

(
k+1 − k−2

)
C0 = p1p2 (p1 + p2)

2
+ p1p2

(
k+1 − k−2

)2 − (−k̃21p̃12 + p̃21k̃12

)2
(43)

− (p1 − p2)
(
k+1 − k−2

) (
−k̃21p̃12 + p̃21k̃12

)
− (p1 + p2)

2
(
k̃21k̃12 + p̃12p̃21

)
The transition curves separating stable region from unstable one corresponding to

Ω = 1
2 (ω1 + ω2) + ε

(
−C1 +

√
C2

1 − C2C0

)
/C2 + ...,

Ω = 1
2 (ω1 + ω2) + ε

(
−C1 −

√
C2

1 − C2C0

)
/C2 + ...

(44)

Clearly the resonance region lies between the two curves given by (44). The regions
outside these curves represent the stable case. Similar results can be obtained for
the case of Ω near 1

2 (ω1 − ω2) by changing the sign of ω2 in the above analysis.

4. An extension for the 2-dimension Mathieu equation

Two dimension un-delayed Mathieu equations having complex damping term have
been formulated in fluid mechanics for streaming flow in the 3-sratified weak viscous
or weak viscoelastic fluids [13-15]. In what follows we extend the above mathemati-
cal procedure, in order to get the influence of the presence of the complex damping
coefficients in the 2-dimension delay Mathieu equation. This extended is governed
below, where equation (2) becomes:

d2

dt2
X (t) + ε (M + iN)

d

dt
X (t) +

[
A+ iεB + 4εQ cos2 Ωt

]
X (t)

(45)

= εHX (t− τ)

where B, M and N are non-singular square matrices of 2 × 2 type. This system
has a growth rate solution given by a quartic polynomial having complex coeffi-
cients. This characteristic equation leads to existing four complex roots (they are
not necessary to be complex conjugates). The properties of this characteristic equa-
tion can be studied to achieve the stability behavior when the resonance influence
is switch off. Therefore, Routh-Hurwitz criterion [25] for stability needs to apply
in order to obtain the negativity of the real parts. On the other side, perturba-
tion techniques are required in order to discuss the stability configuration near the
resonance cases [3].
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Consequently, the modified of equation (11) becomes:(
D2

0I +A
)
X1(T0, T1) = −

[(
2iωj + ετHe−iωjτ

)
D1 + iωj (M + iN)

−He−iωjτ + iB + 2Q
]
Rjπj(T1)e

iωjT0 −
[(
ετHeiωjτ − 2iωj

)
D1

−iωj (M + iN)−Heiωjτ + iB + 2Q
]
Rjπ

∗
j (T1)e

−iωjT0 (46)

−Q
(
ei(ωj+2Ω)T0 + ei(ωj−2Ω)T0

)
Rjπj(T1)

−Q
(
e−i(ωj−2Ω)T0 + e−i(ωj+2Ω)T0

)
Rjπ

∗
j (T1)

The removing of secular terms, in equation (46), at the non-resonant case leads to:

D1πj +
(
p+j + ik+j

)
πj = 0 (47)

D1π
∗
j +

(
p−j + ik−j

)
π∗
j = 0 (48)

They are having the following exponential solutions:

πj(T1) = Λje
−(p+

j +ik+
j )T1 π∗

j (T1) = Λ∗
je

−(p−
j +ik−

j )T1 (49)

where the two parts given in the above exponentials are:

p±j = Sj

[
ετH

(
2Q∓ ωjN

)
cosωjτ ∓ ετH (B ± ωjM) sinωjτ − ετH2

±2ωj (B ± ωjM) + 2ωjH sinωjτ ]Rjr (50)

k±j = Sj

[
ετH (B ± ωjM) cosωjτ + (±ετH sinωjτ ∓ 2ωjI)

(
2Q∓ ωjN

)
±2ωjH cosωjτ ]Rj (51)

These solutions are in the form of the growth rate. Therefore, the Routh-Hurwitz
criteria [25] for stability implies both the conditions:

p+j > 0 and p−j > 0 (52)

Note that, in the limiting case for un-damped two-dimension delayed Mathieu equa-
tion, the stability condition at the non-resonance case is the same as given by (25).

4.1. The resonant case of Ω near ωj where the damping coefficients are
included

When the complex damping coefficients are included the stability picture has been
affected, while the mathematical procedure is the same as explained before. The
stability criteria (33) is still satisfied and can be used to controls the stability be-
havior at the present case except that both the matrices P and K will modified to
including the influence of the damping coefficients and they becomes:

P =

(
p+j p̃j
p̃j p−j

)
and K =

( (
k+j + σ

)
k̃j

−k̃j
(
k−j − σ

) )
where p±j and k±j are as given by (50) and (51) while p̃j and k̃j are the same as in
(29) and (30).
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The first condition in (33) leads to p+j + p−j > 0, which equivalent to the stability
condition at the non-resonance case. Therefore, the critical condition for stability is
the second one in (33). This condition has been formulated in terms of the detuning
parameter σ as:

2p+j p
−
j σ

2 + 4p+j p
−
j

(
k+j − k−j

)
σ

(53)

+
[
p+j p

−
j

(
p+j + p−j

)2
+ p+j p

−
j

(
k+j − k−j

)2 − (p+j + p−j
)2 (

k̃2j + p̃2j

)]
> 0

This condition has two zeros, namely, σ1 and σ2.

In view of (23), the transition curves separating stable region from unstable one
corresponding to:

Ω = ωj + εσ1 + ...,
Ω = ωj + εσ2 + ...

(54)

The region lies between the tongs represent the unstable (resonance) case, which
surrounding by the stable (the non-resonant) case.

4.2. The resonant case of Ω near 1
2 (ω1±ω2) in the presence of the damp-

ing coefficients

At the present case we obtain the following two coupled solvability conditions in-
cluding the influence of the complex damping terms as well as the delay effects.
The characteristic equation (43) is still satisfied except that the matrices P and K
has been included the damping coefficients so that they forms as:

P =

(
p+1 p̃12
p̃21 p−2

)
K =

(
k+1 + δ k̃12
−k̃21 k−2 − δ

)
Stability criteria is the same as in the previous section in which the first condition
for stability is p+1 + p−2 > 0, while the critical condition that satisfied at present
resonance case is the same form of condition (44). In the light of (37), we obtain the
transition curves separating stable region from unstable one in the following form:

Ω = 1
2 (ω1 + ω2) + ε

(
−l1 +

√
l21 − l2l0

)
/l2 + ...,

Ω = 1
2 (ω1 + ω2) + ε

(
−l1 −

√
l21 − l2l0

)
/l2 + ...

(55)

where the real coefficients l2, l1 and l0 are:

l2 = 2p+1 p
−
2

l1 =
(
p−2 − p+1

) (
−k̃21p̃12 + p̃21k̃12

)
+ 2p+1 p

−
2

(
k+1 − k−2

)
l0 = p+1 p

−
2

(
p+1 + p−2

)2
+ p+1 p

−
2

(
k+1 − k−2

)2 − (−k̃21p̃12 + p̃21k̃12

)2
−
(
p+1 − p−2

) (
k+1 − k−2

) (
−k̃21p̃12 + p̃21k̃12

)
−
(
p+1 + p−2

)2 (
k̃21k̃12 + p̃12p̃21

)
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