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1. Introduction

A micropolar elastic solid is an elastic solid whose deformation can be described by
a ‘macro’ displacement together with a ‘micro’ rotation. Micropolar elastic materi-
als are the elastic materials with an extra independent degree of freedom for local
rotations. They include certain class of materials with fibrous and elongated grains.
The theory of micropolar elasticity introduced and developed by Eringen [1-3] has
aroused much interest in recent years, because of its possible utility in investigating
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deformation properties of solids for which the classical theory is inadequate. Fur-
thermore, the micropolar elastic model is considered to be more realistic than the
classical elastic model in studying earth science problems studied by Iesan [4]. The
linear theory of micropolar thermoelasticity was developed by extending the theory
of micropolar continua to include thermal effects by Nowacki [5] and Eringen [6].
Othman et al. [7] studied the effect of rotation and initial stress on generalized mi-
cropolar thermoelastic medium with three-phase-lag. Othman et al. [8] studied the
influence of thermal loading due to laser pulse on generalized micropolar thermoe-
lastic solid with a comparison of different theories. Othman and Singh [9] studied
the effect of rotation on generalized micropolar thermoelasticity in a half-space un-
der five theories. Othman et al. [10] studied the effect of rotation on micropolar
generalized thermoelasticity with two temperatures using a dual-phase lag model.
Abbas and Kumar [11] studied the deformation due to the thermal source in mi-
cropolar generalized thermo-elastic half-space by finite element method. Othman
and Song [12] studied the effect of the thermal relaxation and magnetic field on
generalized micropolar thermoelasticity.

Green and Naghdi [13–15] established a new generalized thermoelasticity theory
(G-N) theory of three types based on the energy and entropy balances, in which
the energy dissipation was not considered in the previous theories. The linearized
form of type I was equivalent to the classical thermoelasticity (CT) theory. Type
II describes the thermo-elastic system without energy dissipation, while type III
permits the dissipation of the energy. Therefore, the (G-N) theory is an ideal ther-
moelasticity theory. Othman and Atwa [16] studied the two-dimensional problem of
generalized thermo-microstretch elastic solid under Green-Naghdi theory. Othman
et al. [17] studied the influence of the gravitational field and rotation on thermoe-
lastic solid with voids under Green-Naghdi theory. Othman et al. [18] studied the
effect of the gravitational field and temperature dependent properties on a two-
temperature thermoelastic medium with voids under (G-N) Theory. Othman and
Atwa [19] studied the effect of rotation on a fiber-reinforced thermoelastic under
Green-Naghdi theory and the influence of gravity. Othman [20] studied generalized
magneto-thermo-microstretch elastic solid under the gravitational effect with en-
ergy dissipation. Othman and Atwa [21] studied the 2-D problem of a mode-I crack
for a generalized thermoelasticity under Green-Naghdi theory.

Kumar et al. [22, 23] investigated different problems in the micropolar elastic
medium due to inclined load. Minagawa et al. [24] discussed the propagation of
plane harmonic waves in a cubic micropolar medium. Kumar and Rani [25] studied
time harmonic sources in a thermally conducting cubic crystal. The deformation
due to other sources such as strip loads, continuous line loads, etc. can also be
similarly obtained. The deformation at any point of the medium is useful to anal-
yse the deformation field around mining tremors and drilling into the crust of the
earth. It can also contribute to the theoretical consideration of the seismic and
volcanic sources since it can account for the deformation fields in the entire volume
surrounding the source region. Some works on (G-N) theory are discussed in Refs.
[26-29].

In the present work, we are studying the effect of inclined load in the micropolar
thermoelastic medium. The formulation is applied in the context of (G-N) theory
of the both types II and III, the normal mode method used to obtain the exact
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expressions for all physical quantities, the distributions of the considered variables
are represented graphically.

2. Formulation of the problem

We consider a homogeneous and micropolar thermoelastic medium under inclined
load. All quantities considered are functions of the time t and the coordinates x,
z and the dynamic displacement vector is u = (u, 0, w). The system of governing
equations of a linear micropolar thermo-elasticity under inclined load and without
body forces based on (G-N) theory:

σji,j = ρui, tt (1)

εijkσjr +mji,j = jρϕi, tt (2)

K∗∇2T +K∇2 ∂T

∂t
= ρCE

∂2T

∂t2
+ T0γ1

∂2e

∂t2
(3)

σij = λur,rδij + µ(ui,j + uj,i) + k(uj,i − εijkϕr)− γ1Tδij (4)

mij = αϕr,rδij + βϕi,j + γϕj, i (5)

where, i, j, r = 1, 2, 3, T is the temperature above the reference temperature
T0 chosen so that |(T − T0)| << 1,λ,µ are the Lame’ constants, the components
of displacement vector u are ui,σij are the components of the stress tensor, e is
the dilatation, eij are the components of strain tensor, j the micro-inertia moment,
mij is the couple stress tensor, δij is the Kronecker delta, α, β, γ and k are the
micropolar constants, εijr is the alternate tensor, the mass density is ρ, the specific
heat at constant strain is CE , the thermal conductivity is K∗ and K is the mate-
rial characteristic of the theory, γ1 = (3λ + 2µ)αt, αt coefficient of linear thermal
expansion.
The constitutive equations can be written as:

σxx = λe+ (2µ+ k)
∂u

∂x
− γ1T (6)

σyy = λe− γ1T (7)

σzz = λe+ (2µ+ k)
∂w

∂z
− γ1T (8)

σxz = µ
∂u

∂z
+ (k + µ)

∂w

∂x
+ kϕ2 (9)

σzx = µ
∂w

∂x
+ (k + µ)

∂u

∂z
− kϕ2 (10)

mxy = γ
∂ϕ2
∂x

(11)

mzy = γ
∂ϕ2
∂z

(12)

Using Eqs. (6–12) in Eqs. (1–3) we have:

ρ
∂2u

∂t2
= (λ+ µ)

∂e

∂x
+ (µ+ k)∇2u− k

∂ϕ2
∂z

− γ1
∂T

∂x
(13)
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ρ
∂2w

∂t2
= (λ+ µ)

∂e

∂z
+ (µ+ k)∇2w + k

∂ϕ2
∂x

− γ1
∂T

∂z
(14)

jρ
∂2ϕ2
∂t2

= k (
∂u

∂z
− ∂w

∂x
) + γ∇2ϕ2 − 2kϕ2 (15)

where: e = ∂u
∂x + ∂w

∂z .
For simplifications we shall use the following non-dimensional variables:

(x′, z′) =
η0
C0

(x, z) (u′, w′) =
ρη0C0

γ1T0
(u, w) t′ = η0 t T ′ =

T

T0

σ′
ij =

σij
γ1T0

ϕ′2 =
ρC2

0

γ1T0
ϕ2 m′

ij =
η0

C0γ1T0
mij (16)

where, η0 =
ρCEC2

0

K∗ , γ1 = (3λ+ 2µ+ k)αt, αt is the linear thermal expansion
coefficient and C2

0 = (λ+ 2µ+ k) /ρ.
Eqs. (13–15) and (3) take the following form (dropping the dashed for convenience):

∂2u

∂t2
=
λ+ µ

ρC2
0

∂e

∂x
+
k + µ

ρC2
0

∇2u− k

ρC2
0

∂ϕ2
∂z

− ∂T

∂x
(17)

∂2w

∂t2
=
λ+ µ

ρC2
0

∂e

∂z
+
k + µ

ρC2
0

∇2w +
k

ρC2
0

∂ϕ2
∂x

− ∂T

∂z
(18)

jρη20
∂2ϕ2
∂t2

= k (
∂u

∂z
− ∂w

∂x
) +

γη20
C2

0

∇2ϕ2 − 2kϕ2 (19)

K∗∇2T +Kη0∇2 ∂T

∂t
= ρCEC

2
0

∂2T

∂t2
+
γ21T0
ρ

∂2e

∂t2
(20)

We introduce the scalar potential q(x, z, t)and the vector potential ψ(x, z, t) which
are related to displacement components, we obtain:

u =
∂q

∂x
+
∂ψ

∂z
w =

∂q

∂z
− ∂ψ

∂x
e = ∇2q

∂u

∂z
− ∂w

∂x
= ∇2ψ (21)

Substituting from Eq. (21) in Eqs. (17–20) we obtain:

(a1∇2 − ∂2

∂t2
)q − T = 0 (22)

(a2∇2 − ∂2

∂t2
)ψ − k

ρC2
0

ϕ2 = 0 (23)

k∇2ψ + (a3∇2 − ρjη20
∂2

∂t2
− 2k)ϕ2 = 0 (24)

K∗∇2T +Kη0

∂

∂t
(∇2T ) = ρCEC

2
0

∂2T

∂t2
+
γ21T0
ρ

∂2

∂ t2
(∇2q) (25)

where: a1 = λ+2µ+k
ρC2

0
, a2 = µ+k

ρC2
0
, a3 =

γη2
0

C2
0
.
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3. Normal mode analysis

The solution of the considered physical variable can be decomposed in terms of
normal modes as the following form:

[q, ψ, T, ϕ2, σij ,mij , F1, F2, f ](x, z, t)

= [q∗, ψ∗, T ∗, ϕ∗2, σ
∗
ij ,m

∗
ij , F

∗
1 , F

∗
2 , f

∗](z) exp(ω t+ iax) (26)

Where, ω is a frequency constant, i =
√
−1, a is the wave number in the x direction.

Using Eq. (26) in Eqs. (22–25), then we have:

[a1 (D
2 − a2)− ω2] q∗ − T ∗ = 0 (27)

[a2(D
2 − a2) − ω2]ψ∗ − k

ρC2
0
ϕ∗2 = 0 (28)

k (D2 − a2)ψ∗ + [a3(D
2 − a2)− ρjη20ω

2 − 2k]ϕ∗2 = 0 (29)

[b1 D
2 − b2] q

∗ + [b3 D
2 − b4 ]T

∗ = 0 (30)

where:

b1 =
− γ21T0ω

2

ρ
b2 =

− γ21T0ω
2a2

ρ
b3 = (K∗ + ωKη0)

b4 = a2(K∗ + ωKη0) + ρCEC
2
0 ω

2

Eliminating q∗, T ∗ between Eqs. (28) and (30) we obtain:

(D4 − C1D
2 + C2){q∗, T ∗} = 0 (31)

Eliminating ψ∗, ϕ∗2 between Eqs. (28) and (29) we obtain:

(D4 − C3D
2 + C4){ ψ∗, ϕ∗2} = 0 (32)

where:
C1 = b4

b3
+ a2 + ω2

a1
− b1

a1b3

C2 = a2b4
b3

+ ω2b4
a1b3

− b2
a1b3

C3 = a2 +
ρjη2

0ω
2

a3
+ 2k

a3
+ a2 + ω2

a2
− k2

ρC2
0a2a3

C4 = a4 +
ρjη2

0ω
2

a3
(a2 + ω2

a2
) + 2k

a3
(a2 + ω2

a2
) + a2ω2

a2
− k2a2

ρC2
0a2a3

The solution of Eqs. (31) and (32), bound for z → ∞, are given by:

q∗ =
2∑

n=1

Mne
−knz (33)

T ∗ =

2∑
n=1

NnMne
−knz (34)

ψ∗ =

4∑
m=3

Mme
−kmz (35)
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ϕ∗2 =
4∑

m=3

NmMme
−kmz (36)

where Mn and Mm are some constants, k2n , (n = 1, 2) are the roots of the char-
acteristic equation of Eq. (31), k2m , (m = 3, 4) are the roots of the characteristic
equation of Eq. (32) and Nn, Nm from Eqs. (27), (28) as follows:

Nn = a1(k
2
n − a2)− ω2, n = 1, 2, Nm =

ρC2
0

k
(a2(k

2
m − a2)− ω2), m = 3, 4.

The roots k21,2 and k23,4 of Eqs. (31) and (32), respectively, are given by:

k21,2 =
1

2
(C1 ±

√
C2

1 − 4C2 ) (37)

k23,4 =
1

2
(C3 ±

√
C2

3 − 4C4 ) (38)

4. Boundary conditions

We consider an inclined load p acting in the direction who make an angle θ with
the direction of the x axis:

σzz = F1 = −p cos θ σzx = F2 = −p sin θ mzy = 0 T = f(x, t) (39)

Using (16), (21), 926) on the non-dimensional boundary conditions and using (8),
(10), (12), (34) we obtain the expressions of the displacement components, the stress
components, the coupled stress distribution for micropolar thermoelastic medium:

u∗ = ia(M1e
−k1z +M2e

−k2z)− k3M3e
−k3z − k4M4e

−k4z (40)

w∗ = −k1M1e
−k1z − k2M2e

−k2z − ia(M3e
−k3z +M4e

−k4z) (41)

σ∗
zz = h1M1e

−k1z + h2M2e
−k2z + h3M3e

−k3z + h4M4e
−k4z (42)

σ∗
zx = l1M1e

−k1z + l2M2e
−k2z + l3M3e

−k3z + l4M4e
−k4z (43)

m∗
zy = r3M3e

−k3z + r4M4e
−k4z (44)

where: h1 = −a2a4 + a1k
2
1 −N1, h2 = − a2a4 + a1k

2
2 −N2, h3 = −iaa4k3 + iaa1k3,

h4 = − iaa4k4 + iaa1k4, l1 = − ia(a5k1 + a2k1), l2 = − ia(a5k2 + a2k2), l3 =
a2a5 + a2k

2
3 − a6N3, l4 = a2a5 + a2k

2
4 − a6N4, r3 = − a7k3N3, r4 = − a7k4N4,

a4 = λ
ρC2

0
, a5 = µ

ρC2
0
, a6 = k

ρC2
0
, a7 =

γη2
0

ρC4
0
.

Invoking the boundary conditions (39) at the surface z = 0 of the plate, we obtain
a system of four equations. After applying the inverse of the matrix method, we
have the values of the four constants Mn , n = 1, 2 and Mm , m = 3, 4. Hence,
we obtain the expressions of the physical quantity distribution for the micropolar
generalized thermo-elastic medium:

M1

M2

M3

M4

 =


h1 h2 h3 h4
l1 l2 l3 l4
0 0 r3 r4
N1 N2 0 0


−1 

F ∗
1

−F ∗
2

0
f∗

 (45)
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5. Numerical results

To study the effect of inclined load, we now present some numerical results. For
this purpose, the copper is taken as the thermoelastic material for which we take
the following values of the different physical constants:

λ = 7.7× 1010kgm−1s−2, µ = 3.86× 1010kgm−1s−2, αt = 1.78× 10−5K−1,

ρ = 8945 kgm−3, ce = 383.1 Jkg−1K−1, T0 = 293K, K∗ = 2.97× 102,

K = 170kgmK−1s−3, j = 0.2× 10−15m, k = 1.0× 1011, a = 1.0, x = 0.4,

t = 0.1, p = 2.0, f = 1.0, ω = ω0 + iξ, ω0 = 0.7, ξ = 0.3.

The above numerical technique, was used for the distribution of the real parts of
the displacement components uand w, the temperature T, the stress components
σzz and σzx, the couple stress component mzy and the microrotation component ϕ2
with the distance zin 2D for (G-N) theory of types II and III with inclined effect. All
the physical quantities are shown graphically in figures 1-7 in the case of different
values of angle (θ = 30◦, 45◦, 60◦).

Fig. 1 depicts that the distribution of u increases with the increase of θ, we note
that the curves in the (G-N) of type III greater than the curves of type II. Fig. 2
depicts that the distribution of wdecreases with the increase of θ, we note that the
curves in the (G-N) of type III under the curves of type II. Fig. 3 shows that the
angle has a low effect on the temperature distribution. Fig. 4 expresses that the
distribution of σzz increases with the increase of θ, we note that the curves in the
(G-N) of type III under the curves of type II. Fig. 5 explains that the distribution
of σzxdecreases with the increase of θ, we note that the curves in the (G-N) of type
III under the curves of type II. Fig. 6 depicts that the distribution of the couple
stress component mzy increases with the increase of θ, we note that the curves in the
(G-N) of type III above the curves of type II. Fig. 7 depicts that the distribution of
the microrotation component ϕ2 decreases with the increase of θ, we note that the
curves in the (G-N) of type III under the curves of type II. It is noticed that all the
curves converge to zero, and the angle has a significant role for the distributions of
all physical quantities.

3D curves are representing the complete relations between physical quantities, and
both distance components as shown in Figs. 8–12, with the angle θ = 15◦ in the
context of (G-N III). These figures are very important to study the dependence of
these physical quantities on the two displacement components. The curves obtained
are highly depending on the distance from origin, all the physical quantities are
moving in wave propagation.
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6. Conclusion

According to the above results, we can conclude that:

1. The curves of the physical quantities with (G-N III) are most differing from
the curves with (G-N II).

2. The used method in the present article is applicable to a wide range of prob-
lems in thermoelasticity.

3. The values of all the physical quantities converge to zero by increasing the
distance z and all the functions are continuous.

4. The inclined load plays a significant role in the distribution of all the physical
quantities.
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