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Several theoretical models have been proposed to predict the fatigue crack growth range
(FCGR) process using solid mechanics, based theoretical tools and basic or fundamental
mechanical properties. Moreover crack growth is linked to the existence of a plastic zone
at the crack tip when the formation and intensification are accompanied by dissipation of
energy. The overall objective of the present research is to develop, verify, and extend the
computational efficiency of the model for fatigue crack growth range (FCGR) function
by elastic properties, cyclic hardening and celebrated Paris law. The influence of the
variability to elastic properties (Young’s modulus E, tensile strength σe and cyclic hard-
ening exponent n’) is a necessary analysis in this work. The predictions of the proposed
model were compared with experimental data obtained by [1].

Keywords: cyclic hardening exponent, tensile strength, Young’s modulus, crack tip,
analytical model for fatigue crack growth, elastic properties.

1. Introduction

Fatigue crack growth resistance of a material depends upon a number of factors, such
as: its composition, mechanical properties and heat treatment conditions, external
loading and the environment. The understanding of the mechanisms governing
fatigue crack growth has made significant advances since the Paris [2] proposed a law
that relates the crack growth rate (da/dN) and the amplitude of stress intensity
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factor range (∆K):
da

dN
= C (∆K)

m
(1)

In the Paris law there is no evidence about the mechanical parameters effects.
Several authors have attempted to integrate others parameters such as the stress
ratio (R), critical stress intensity factor (KC), etc. Broek and al [3] have proposed
an empirical relationship by introducing stress ratio effect (Eq. 2):

da

dN
= C1

(
∆K

1−R

)3

exp (−C2R) (2)

Where C1 and C2 are the characteristic parameters of the material
For R = 0, this relationship is reduced to:

da

dN
= C1 (∆K)

3
(3)

Experimentally, the exponent m given by the Paris law can vary between 2 and
6 for most metals and alloys. Forman [4] has proposed a new relationship that
reflects the fracture by incorporating the stress ratio and critical stress intensity
factor (KIC) expressed as follow:

da

dN
=

C (∆K)
m

(1−R) (KIC−∆K)
(4)

This equation has been verified many times in the case of aluminum alloys [5, 6, 7].
Richards and al [8] has proposed a relationship from modifications of Bilby’s equa-
tion [9]. The fatigue crack growth rate law is given by the following equation:

da

dN
= A

[
(∆K−∆Kth)

4

σ2
m (K2

C−K2
max)

]m
(5)

In general, the phenomenon of crack closure has been most widely accepted as
a critical mechanism influencing many aspects of the behavior of fatigue cracks in
metallic materials, including R-ratio effects, variable amplitude loading, crack size,
microstructure, environment and the magnitude of the fatigue threshold.
Elber [10] was the first researcher to introduce the concept of crack closure in fatigue
crack growth. This concept reveals the premature contact of the crack faces during
the unloading portion of the loading cycle while some tensile load is still applied.
The fatigue crack growth rate is in function of a new term named effective stress
intensity factor range(∆Keff ), defined as:

da

dN
= C (∆Keff )

m
(6)

with ∆Keff = Kmax+Kop, whereKmax defines the maximum stress intensity factor
and Kop the stress intensity factor for the crack opening.
Besides this mechanically based concept, other approaches based on energy con-
sideration [5] or on micro mechanisms acting at the crack tip had been developed.
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In these approaches certain authors attempted to express the crack growth rate by
explaining the effects of different parameters by means of theoretical models based
on the crack tip opening theory [11, 12, 13] and cyclic hardening, on dislocation
theory [9, 14].
In the study conducted by Leiting and al [15] an approximation was proposed for
(a-N) relation as well as the da/dN − ∆K, in fatigue crack propagation using
the Moving Least Squares (MLS) method. This approach can avoid the inter-
nal inconsistencies caused by the celebrated Paris’s power law approximation of
the da/dN −∆K relation.
Other models join the macroscopic and cyclical properties of the material such as
the cyclic or static consolidation coefficient of the Miner or Manson-Coffin laws, the
measurement of the strain hardening exponent is proposed.
Duggan [16] focused on the deformation of a volume element located at the crack-tip.
This volume element is only subjected to elastic deformations and so the effect of
softening or hardening is neglected. Duggan [16] supposed that the propagation will
occur when the Manson-Coffin and Miner laws are verified at the same time. Duggan
[16] himself considered the boundary conditions (∆K → ∆Kth or Kmax →KCt),
found that:

da

dN
=

π

4

(
1

ε
′
fEKC

)2

∆K4 (7)

McClintock [17, 11] developed theoretical models to express crack growth based on
the crack opening. Taking into account the size of the plastic zone, the expression
of the crack propagation is given by:

da

dN
=

1

8

∆K2

σeE
(8)

Radon [18] proposed a crack growth model for the near threshold region (∆Kth)
which incorporates mechanical, cyclic and fatigue properties of the material, and a
cyclic plastic strain (∆εP ) based failure criterion. He also introduced an effective
stress intensity factor range (∆Keff ) which characterizes the crack tip opening
displacement and the strains immediately ahead of the crack tip. The cyclic plastic
strain range (∆εP ) at the crack front is given by the expression,

∆εP =
2σe

E

[
∆K2

4π(1 + n′)σ2
ea

] 1
1+n′

(9)

Radon [18] obtained a simple model of cyclic crack propagation in the threshold
region and developed an expression for the crack growth rate, given below.

da

dN
=

21+n′
(1−2υ)2

4(1 + n′)π

(∆K2
eff−∆K2

th)

σ1−n′
e E1+n′ε1+n′

f

(10)

where (σe) is the cyclic yield stress, (n’) is the cyclic strain hardening exponent,
(E) is the young’s modulus, (υ) is Poisson’s ratio and (εf ) is the fracture strain.
Models based on the calculation of the crack tip with hardening have been devel-
oped by many researchers [19, 1] and [21]. These models are about calculating
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the plasticized monotonic and cyclical areas created by the cyclical stress; it is
generally assumed that the crack propagation is proportional to the energy lost in
the plasticized zones. All these models use hysteresis loops to evaluate the plas-
tic deformation. The macroscopic behavior characterized by the hysteresis loop is
introduced into these models to describe the microscopic behavior at the crack tip.
Lal and al [22] developed a model that integrates some notions, such as the effective
strain intensity factor defined by Elber. These authors calculate the monotonous
and cyclic plasticized zones:

rpm =

(
∆K

2σe

)1+n′

a1−n′/2 (11)

This relationship is obtained from the calculation performed under simple trac-
tion replacing the monotonous work hardening exponent by the cyclic hardening
exponent and K by ∆K.
If we apply Elber’s hypothesis, Lal and al [22] presume that a single part of a cycle
is necessary to close the crack, and thus to create the plasticized zone, the other part
of the cycle inducing the grounding of the crack lips. Then they use the definition
of the monotonous plastic zone that was calculated previously, by replacing ∆K by
∆Keff and thus obtain the dimensions of the cyclic plasticized zone:

rpc = rpmU1+n′
(12)

Using the hypothesis suggested by Tomkins [23], the fatigue crack growth model is
described in function of ∆εpand rpc as follow:

da

dN
= ∆εprpc (13)

In order to calculate∆εp, they use the equation ∆σN/2 = k
′
(∆εp/2)

n′
which de-

scribes the hysteresis loops, where ∆σN is the variation of stress in the ligament.
They expressed the plastic deformation as an amplitude function of the stress in-
tensity factor:

∆εp =

[
∆K

(
√
πa)k′(1−a/w)

] 1
n′

(14)

The propagation rate is then equal to:

da

dN
=

(0, 5U)1+n′

(k′
√
π)
1/n′

σ1+n′
e

(√a/w
)n′(1−n′)√

a/w (1−a/w)


1/n′(

√
w)

1−n′−1/n′
(∆K)

1+n′+1/n′

(15)

This equation has been verified for many materials (aluminum, mild steel, stainless
steel and copper) and the calculated and measured values of parameters C and m
of the Paris’ law agree with it.
Two of the parameters of equation (15), (a) and (w) are geometric and easily mea-
surable. The other three U, σe, k

′ and n′ depends on the material. The rate de-
creases when the elasticity limit increases, and it increases if R increases, which
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matches the experimental results. Parameters σe, k
′ and n′ might be easily cal-

culated, but U (except for some aluminum alloys) is less well known. However,
there is not enough experimental evidence to determine the variation of the rate as
a function of crack length.
Pugno [24] developed a crack propagation model based on the Wöhler curve (S-N).
They expressed da/dN in the parameters of the relationship Basquin that assimi-
lates the limited endurance zone Nf to straight line:

σD∆σb
m = N∞∆σb

D = Nf∆σb = CND < Nf < N∞ (16)

They proposed the following expression:

da

dN
= C(∆σ

√
π(a+ ( ∆σb−m

CCπm/2(m/2−1)
)
1/(m/2−1)))m (17)

Generally speaking, All these models cannot be applied; each describes a situation
and becomes unsuitable as soon as a parameter of the experience varies. So, to
release the results of a model, the influence of the intrinsic parameters (Young’s
modulus, grain size, yield strength, toughness) and extrinsic (specimen dimensions,
and environmental effects) on the propagation speed of a fatigue crack should be
considered.
In numerical investigation, Patel [25] have proposed a crack growth model for mul-
tiple surface cracks. This model was used in the study of multiple interacting and
coalescing semi-elliptical cracks and plastic zones at crack tip.
In recent investigations, [26, 27] have developed exponential models for 2024 T351,
2024 T3 and 7020 T7 aluminum alloys respectively. This model is described by the
following equations:

aj = aie
mij (Nj−Ni) (18)

mij =
ln
(

aj

ai

)
(Nj−Ni)

(19)

Fatigue crack growth behavior dependents strongly on initial crack length and pre-
vious load history. The specific crack growth rate (m) is correlated by another
parameter (l) which takes into account the two crack driving forces ∆K and Kmax

as well as materials parameters KC , E, σe and is defined by the following equations
(Eq. 20 and Eqs. 21, 22):

l = [(
∆K

KC
)(
Kmax

KC
)(
σe

E
)]1/4 (20)

m = A
′
.l3 +B

′
l2 + C

′
l +D

′
for 2024 T3 and 7020 T7 (21)

m = A
′
.l4 +B

′
l3 + C

′
l2 +D

′
l + E

′
for 2024 T351 (22)

In a recent study, [28] have developed analytical fatigue crack growth rate model
based on crack closure expression, effective cyclic plastic zone and the low cycle
fatigue properties. Comparative results demonstrate that the fatigue crack growth



924 Kebir, T., Benguediab, M. and Imad, A.

rate estimated by the theoretical model closely approximates the experimental re-
sults. The predicted model is limited in isotropic material.
The objective of this work is to study the evolution of analytical model for fatigue
crack grown rate (FCGR) and the influence of the elastic properties with cyclic
hardening (E, σe, n

′) based on the properties obtained experimentally from [1].

2. Analytical model

The relation (1) is valid between ∆Kth≤∆K≤∆KIC . By integrating equation (1),
the number of cycles is given by:

NP
f =

∫ ac

a

1

C(∆K)m
da (23)

It is the same for the relationship (24) [29]:

∆εP
2

= ε′f (2N
B
f )c

′
(24)

We obtain:

NB
f =

1

2
(

1

2ε′f
)

1
c′ (∆εP )

1
c′ (25)

Based on the assumptions made by Pugno [24], who considered that there is equality
between the lifetime obtained by the relation of Paris and the one determined by
the law of Basquin from the Wöhler curve, so we have:

NP
f = NB

f (26)

where NP
f and NB

f are the final lifetimes obtained by Paris and Manson-Coffin laws
respectively.
For crack lengths between a0and acand an exponent of Paris m > 2, the number
of cycles is given by:

NP
f =

2(a)
2−m

2

C((∆σ)m)(π
m/2)(m−2)

(27)

The equality (26) will be written as follow:

1

2
(

1

2ε′f
)

1
c′ (∆εP )

1
c′ =

2(a)
2−m

2

C((∆σ)m)(π
m/2)(m−2)

(28)

From the relationship (28), the expression of the plastic deformation is drawn and
written the following way:

(∆εP ) = (2ε′f )

 4a
2−m
2

C((∆σ)m)(π
m/2)(m−2)

c′

(29)

with c′ = −2
m.(n′+1) is obtained by Glinka [30] and ∆σ2 = ∆K2

π.a equation (29) can be

written as follows:

(∆εP ) = (2ε′f )

(
4a

C(m−2)
)(

2
m )(∆K−2

)( −1
n′+1

)

(30)
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The ray of the cyclic plastic zone is given by the relationship:

rc =
1

2πσ2
e

(∆K)2 (31)

Replacing ∆K obtained from equation (9) and introducing it into (31), the expres-
sion of the radius of the plastic zone is:

rc =
1

2πσ2
e

[(
∆εPE

2σe
)

1+n′
2

((1 + n′)πa)
1
2

(2σe)−1
]2 (32)

rc = [(
E

2σe
)1+n′

2a(1 + n′)](∆εP )
1+n′

(33)

rc = (
2ε′fE

2σe
)1+n′

2a(1 + n′)[
C(m−2)

4a
]

2
m (∆K)2 (34)

Substituting Equation (33) into Equation (13), the crack propagation is given by:

da

dN
= (∆εp)

2+n′
2a(1 + n′)(

E

2σe
)1+n′

(35)

Substituting Equation (30) into Equation (35), the crack propagation can be written
in a form similar to that of the Paris law:

da

dN
= A (∆K)

B
(36)

where the constants A and B are defined as:

A = (
E

σe
)1+n′

2(1 + n′)(ε′f )
n′+2

(
(C(m−2))(2n

′+4)

4(2n′+4)(a)(2n′+4−mn′−m)

)( 1
m(n′+1)

)

B =
2n′ + 4

n′ + 1

3. Application and discussion

The above model presents the fatigue crack growth based on elastic properties due
to the plasticity by cyclic hardening at the crack tip and the constants of the Paris
law. All properties parameters for the steel 12NC6 in three states, used for the
validation and comparison of the results obtained by the developed model to the
experimental results Ould Chikh and al [1], are reported in table 1. In addition, the
variability of the elastic properties by hardening parameters is evaluated to show
their influence on fatigue crack growth.

In order to test the validity of the proposed model, three applications will be
given when the (CT) specimen is used according to ASTM code (ASTM E647-00)
with the same applied loading defined in experimental tests Ould Chikh and al [1].
The geometrical parameters and applied loads for specimens are defined in Table 2.
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Table 1 Mechanical properties of 12NC6 steel

Material E
(GPa)

σe

(MPa)
n’ k’

(MPa)
C m εf ’ Reference

Mat 1
Mat 2
Mat 3

222
187
177

1070
880
270

0.062
0.034
0.233

1604
1052
885

4.02e-8
5.43e-9
2.87e-9

2.80
2.98
3.20

0.20
0.22
0.23

[1]
[1]
[1]

The stress intensity factor range for specimen is given by the equation:

∆K = ∆σf(
a

w
) (37)

where ∆σ = ∆P
B
√
w
; ∆P = Pmax−Pmin define the amplitude loading, Band w are

the thickness and width of the tested specimens respectively.

Table 2 Experimental conditions obtained for tested all material 12NC6 steel

B (mm) W
(mm)

Frequency
(Hz)

Pmax

(KN)
Pmin

(KN)
Reference

15 80 30 10 1 [1]

Firstly, the theoretical evaluation of the plastic zone size in the vicinity of the
crack tip is handicapped by the distorted picture of the stress field in front of a
fatigue crack. So far practically no information on the Young’s modulus, cyclic
hardening exponent and the Paris law parameter within the plastic zone attending
a fatigue crack is available. In this study we propose the cyclic plastic zone size
versus by the properties of the different parameters (Eq. 34).
Fig. 1 shows that the evolution in cyclic plastic zone size versus the stress intensity
factor range have the same trend comparatively for three materials to those obtained
experimentally Ould Chikh and al [1], it can be seen that the results gave a good
correlation between experimental data and predicted the cyclic plastic zone size
from various materials, thus establishing confidence in the results of the model for
materials fracture analysis.

In the testes of the model for fatigue crack growth range (Eq. 36) developed by
this work, it is of interest to take into account the crack growth effect which are
the different material properties such as Young’s modulus, tensile strength, cyclic
hardening exponent and the celebrated Paris law.
The values of the materials properties listed in Table 2 are plotted against for
experimental curves results [1]. Fig. 2 shows that the experimental and computed
values lie near a line drawn through the origin experimental data [1] suggesting
a good agreement between them. However, our approach, in this study, is very
direct and perhaps explains the variability of different material properties in a more
straightforward way.
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Figure 1 Cyclic plastic zone size versus stress intensity factor range

Figure 2 Fatigue crack growth rate versus stress intensity factor range
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4. The influence of variability on elastic properties and cyclic hardening
exponent

In these respects, the proposed approach has the advantage of being an “interpola-
tion procedure to variability” between the elastic properties (tensile strength (σe),
Young’s modulus E) and cyclic hardening (n’) within the cyclic plastic zone size
and fatigue crack growth range, hence avoids the risk associated with the inevitable
“extrapolation” nature of the many other phenomenological but essentially em-
pirical models. These works correctly modeled suggest a qualitative experimental
verification, but the model, in the present form, remains essentially speculative.

4.1. In cyclic plastic zone size

Fig. 3 show the variability of the tensile strength (σe) on the evolution of cyclic
plastic zone size versus the stress intensity factor range (∆K). The influence of the
tensile strength is well marked on the evolution of the cyclic plastic zone size. It is
noticed that the plastic zone size increases when the tensile strength (σe) decreases.
Several studies [31, 1, 22, 32, 33] can be remarked the phenomena.

Figure 3 Cyclic plastic zone size versus stress intensity factor range with variability to stress field

Also, the cyclic plastic zone size as a function of stress intensity factor range at
different value of Young’s modulus (E = 222–187–177 GPa), are plotted shows Fig.
4. Effectually, this variability was influenced slightly proportional the cyclic plastic
zone size, signified the Young’s modulus is depended of rigidity within hardens
materials, can be increase (or decrease) slowly the cyclic plastic zone size for all
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depends direction of the evaluation [34, 35], as the value E = 187 GPa increase to
222 GPa the cyclic plastic zone size increase to approximate mean value 0,06 mm.
Therefore, this indicates that the relationships (Eq. 34) can successfully attentive
the influences by Young’s modulus.

Figure 4 Cyclic plastic zone size versus stress intensity factor range with variability to Young’s
modulus

Further, the evaluate of cyclic hardening exponent within the relationship to cyclic
plastic zone size versus the stress intensity factor range is clearly identified, shown
Fig. 5, the influence to variability of cyclic hardening exponent increase when the
cyclic plastic zone size increase, to explain by the cyclic plastic zone size near at
crack tip becomes higher which induce a brittle (higher hardening exponent n’) or
ductile (lower hardening exponent n’) fractures [33, 36]. The fracture type is related
to the level of cyclic hardening exponent.

4.2. In fatigue crack growth

Fig. 6 shows the velocity to fatigue crack growth rate versus the stress intensity
factor range with three different value to tensile strength (σe) into relationship
(Eq. 36). The influence to variability it seems clearly suitable thus the velocity to
fatigue crack growth rate increase when the tensile strength decreases. However,
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Figure 5 Cyclic plastic zone size versus stress intensity factor range with variability to cyclic
hardening exponent

Figure 6 Fatigue crack growth rate versus stress intensity factor range with variability to stress
field
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these remarks completed to obtain such relationship (Eq. 34) Fig. 3, we can say
that the variability of tensile strength is an important parameter into cyclic plastic
zone size within this model proposed for fatigue crack growth rate (Eq. 36), which
characterizes the stress field and strain at the crack tip.

The fatigue crack growth rates for Aluminum alloys are much more rapid than
steel for a given ∆K [1, 36].However, when the influence to variability by Young’s
Modulus for each metal exhibit about different behavior from fatigue crack growth.
Figure 7 shows the fatigue crack growth rate as a function the stress intensity range
at different value for Young’s modulus for 12NC6 steel study, it is shown that there
exist weakly influence by variability to this parameter such as the fatigue crack
growth rate increase slowly when increase the Young’s modulus.

Figure 7 Fatigue crack growth rate versus stress intensity factor range with variability to Young’s
modulus

Other, at the crack tip on course fatigue cycle, the cyclic plastic zone size effect
themo-mechanical modified material behavior, presents an important hardening.
There exist evident influences of cyclic hardening exponent (n’) on the evolution of
fatigue crack growth versus stress intensity factor range ∆K shown in figure 8, the
influences to variability clearly of the cyclic hardening exponent (n’) increase when
the fatigue crack growth range increase, the high level cyclic hardening exponent
(n’) has been obtained the fracture materials [31, 32, 34, 18, 22].
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Figure 8 Fatigue crack growth rate versus stress intensity factor range with variability to cyclic
hardening exponent

5. Conclusion

This paper focuses on propose model analytical for fatigue crack growth at the
crack tip with different materials properties parameters (Tensile strength, Young’s
modulus and hardening exponent). However, the variability influenced the cyclic
plastic zone size behavior. This works suggested notice remarks, for considering the
different materials parameters into model proposed form the fatigue crack growth
rate can be seen an excellent agreement with experimental data [1], the cyclic plas-
tic zone size depends also on many variables parameters, the variability of these
different parameters studies have been influence the cyclic plastic zone size within
effects such as fatigue crack growth rate.
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