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This paper focuses on the applications of the new method of estimation of the Largest
Lyapunov exponent. The method has been adapted to continuous dynamical systems
with time delay. The paper presents efficiency of the new method in comparison with
classical algorithms of LLE estimation. Computation times and convergence rates have
been compared with the typically used method. It has been revealed in this paper that
for the van der Pol oscillator, application of the new method increases the efficiency of
calculations by 28% comparing to the classic one. Therefore, authors claim that the
method presented in this paper is the fastest one in the assumed range of applications.
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1. Introduction

Depending on a dynamical system type and a kind of information that is useful
for its investigations, different types of invariants characterizing system dynamics
are applied. For instance one may use Kolmogorov entropy [1–2], correlation di-
mension [3–4], Lyapunov energy function [5] to determine stability of solutions and
complexity of the system dynamics [6]. But when there occurs a need to predict
the behavior of a real system with a possibility of different disturbances existence,
Lyapunov exponents are one of the most commonly applied tools. That is because
these exponents determine the exponential convergence or divergence of trajectories
that start close to each other. The existence of such numbers has been proved by
Oseledec theorem [7], but the first numerical study of the system’s behavior using
Lyapunov exponents had been done by Henon and Heiles [8], before the Oseledec
theorem publication. The most important algorithms for calculating Lyapunov ex-
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ponents for continuous systems have been developed by Benettin et al. [9] and
Shimada and Nagashima [10], later improved by Benettin et al. [11] and Wolf [12].
One possible approach for systems with discontinuities or time delay, is estimation
of Lyapunov exponents from a scalar time series basing on Takens procedure [13].
Numerical algorithms for such estimation have been developed by Wolf et al. [14],
Sano and Sawada [15], and later improved by Eckmann et al. [16], Rosenstein et
al. [17] and Parlitz [18]. Alternative method based on synchronization phenomena
was elaborated by Stefanski [19–22].

Nowadays, Lyapunov Exponents are employed in many different areas of scien-
tific research such as: materials [23–24], electric power systems [25], non-continuous
systems [26-29, 20, 22], systems with time delay [21], aerodynamics [30], time se-
ries analysis [31–34], optimal control [35–36], chaotic encryption and secure com-
munication [37–38], multi-objective optimization [39], parametric oscillations and
fluctuating parameters [19, 40], neuronal models investigations [41].

Thus, there is still need to elaborate fast and simple methods of LE calculation.
Recently, author of this paper presented a new, simple and effective method of
estimation of the Largest Lyapunov Exponent (LLE) from the perturbation vector
and its derivative dot product. It is based on simple computations involving only
basic mathematical operations such as summing, subtracting, multiplying, dividing.
It has been shown that LE can be extracted from information known before each
integration step. The method can be applied in different aspects of the nonlinear
systems control. Continuous systems [42], synchronization phenomena detection
[43] and time series in control systems [44–46] have been investigated.

The article presents an adaptation of the previously described method to systems
with time delay. The theoretical background has been explained. The method has
been applied to estimate the LLE value of the forced van der Pol oscillator with a
time delay. The bifurcation diagram and the corresponding LLE graph have been
presented. The results are coincident with the values obtained in earlier research
by means of a different LLE estimation method [21].

Moreover, the paper presents efficiency of the new method in comparison with
classical algorithms of LLE estimation. The method has been tested for the forced
van der Pol oscillator. Computation times and convergence rates have been com-
pared with the method typically used [47] that involves calculations of perturbations
lengths logarithms. The method presented in [47] uses the same approach as algo-
rithms described in classical works, such as [9 - 11]. To authors’ best knowledge, no
faster algorithms of the LLE estimation for continuous dynamical systems than [9–
11, 47] have been published. In this paper it has been revealed that for the van der
Pol oscillator, application of our new method increases the efficiency of calculations
by 28% comparing to [47]. Therefore, authors claim that the method presented in
this paper is the fastest one in the assumed range of applications.

2. The method

Assume that a dynamical system is described by the set of differential equations in
the form:

dx

dt
= f(x) (1)
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where x – state vector and f is a vector field that (in general) depends on x.
Evolution of a small perturbation z near any point x in such system can be found
from the equation:

dz

dt
=

df

dx
(x)z (2)

where df
dx (x) is the Jacobi matrix obtained by differentiation of fwith respect to x.

As it has been shown in the article [42], the value of LLE can be estimated from
the following expression:

λ∗ =
dz
dt z

|z|2
(3)

where z is a perturbation vector, whose evolution can be obtained by numerical
integration of equation (2). The approximate value of the LLE (λ) is obtained by
averaging values of λ∗ from subsequent computation steps. For long enough time
of integration, the average value of λ∗ converges to the LLE.

However, it must be noted that formulas (1-2) are no longer valid when a time
delay is present in the system. A dynamical system with a constant time delay can
be, in general, described by the set of differential equations in the form:

dx

dt
= g(x(t), x(t− τ)) (4)

where τ is a constant time delay. Consider two trajectories that start infinitesimally
close to each other: an undisturbed one x(t) and a disturbed one y(t) = x(t) +
z(t) where z(t) is an infinitesimal perturbation. In such case, evolution of the
perturbation z(t) is defined by the following differential equation:

dz
dt = g(y(t), y(t− τ))− g(x(t), x(t− τ))

≈ ∂g
∂x(t) (x(t))z(t) +

∂g
∂x(t−τ) (x(t− τ))z(t− τ)

(5)

From formula (5) one can notice that evolution of a perturbation in the system
(4) depends on current state x(t), current value of perturbation z(t), delayed state
x(t − τ) and delayed perturbation z(t − τ). It has been checked by numerical
simulations that when evolution of the perturbation is computed according to (5),
formula (3) can be applied to estimate the value of the LLE of the system (4). Please
note that the numerical procedure must involve memory of the previous states
and previous perturbations. It has to be taken into account that normalization
of the perturbation z(t) must be conducted along with division of all the previous
perturbations in the memory by the same factor.

3. Numerical simulations

In the first part of the numerical experiment, the delayed van der Pol oscillator has
been analyzed. The differential equation of such system is as follows:

ẍ− µ(1− x2)ẋ+ βx3 = κx(t− τ)− q sin(ωt) (6)
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where µ, β, κ, τ, ω are constant parameters. In the state-space form (1), the system
(6) can be presented as:

ẋ1 = x2

ẋ2 = µ(1− x2
1)x2 − βx3

1 + κx1(t− τ)− q sin(x3)
ẋ3 = ω

(7)

Please note that delayed function has been described explicitly with the argument
(t − τ), whereas all other functions are implicitly referred to the current time (t).
Evolution of a perturbation in the system (6) is described by the following equation:

ż1 = z2
ż2 = (−2µx1x2 − 3βx2

1)z1 + µ(1− x2
1)z2 + κz1(t− τ)

ż3 = 0
(8)

It has been assumed that the third state variable (forcing phase) is not disturbed.
Thevalue κ has been used as a control parameter of the bifurcation diagram.

The simulation script and the LLE estimation procedure have been created using
Python 3 with NumPy and SciPy packages. Integration has been performed by
means of Runge–Kutta method implemented in the SciPy package. The maximum
integration step equal to ∆t = 10−3 has been selected.

In order to simulate the system (7), states x(t−∆t), x(t− 2∆t), ..., x(t− τ) and
perturbations z(t − ∆t), z(t − 2∆t), ..., z(t − τ) must be temporarily saved in the
memory. In the simulation under consideration, previous states and perturbations
have been stored in an array of vectors. To find the value of a state or a perturbation
in the mid step, the linear approximation has been used.

Situations in which the length of a perturbation attains too high or too low values
must be avoided. Therefore, perturbation length control has been implemented.
When the length of a perturbation gets out from a desired range, it is normalized
to 1. Moreover, all the previous perturbations from the program memory are divided
by the same factor. In the presented simulations, normalization is triggered when
the magnitude of a perturbation was above 106 or below 10−6.

After every integration step value λ∗ is calculated according to the formula (3).
Throughout the simulation, the averaged value λ approaches the true value of the
LLE.

The second part of the experiment has been focused on efficiency comparison
between the presented method of the LLE estimation and the classical method [47].
The test involved estimation of the LLE value of the forced van der Pol oscillator
described by the following equation:

ẍ− µ(1− x2)ẋ+ x = q sin(ωt) (9)

In the state space form (1), the system (9) can be presented as:

ẋ1 = x2

ẋ2 = µ(1− x2
1)x2 − x1 + q sin(x3)

ẋ3 = ω
(10)
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Evolution of a perturbation in the system (10) is described by the following equation:

ż1 = z2
ż2 = (−2µx1x2 − 1)z1 + µ(1− x2

1)z2
ż3 = 0

(11)

Again, it has been assumed that the third state variable (forcing phase) is not
disturbed. The value µ has been used as a control parameter of the bifurcation
diagram.

Simulation programs have been developed in C++ using CodeBlocks 15.12. In
order to integrate the system of differential equations (10-11), Runge-Kutta method
of the fourth order has been used. The integration step equal to ∆t = 10−3 has
been selected.

In order to avoid situations in which the length of a perturbation attains too high
or too low values, perturbation length control was implemented. When the length of
a perturbation gets out from a desired range, it is normalized to 1. In the presented
simulations, normalization is triggered when the magnitude of a perturbation was
above 1010 or below 10−10. After every integration step, value λ∗ is calculated
according to the formula (3). Throughout the simulation, the averaged value λ
approaches the true value of the LLE.

The calculations must be stopped when the estimated value of the LLE stabilizes.
Therefore, the values of λ computed in subsequent iterations of the procedure are
stored in a buffer. When the buffer is full, the standard deviation of all the values
in the buffer is calculated. If the standard deviation is low enough, the estimated
LLE is considered stable. In such case, the average of all the values in the buffer is
returned as the final LLE. On the other hand, when the standard deviation in the
buffer is higher than the required threshold, the buffer is cleared and the calculations
are continued.

For the purpose of time comparison, a modification of the simulation program
has been created. It used the standard method of LE estimation based on calcu-
lation of natural logarithm of the perturbation length [47]. Most of the program
remained unchanged in order to reduce the undesired influences on the method ef-
ficiency measurement. Both programs were run separately on the same computer.
Authors did their best to provide equal conditions in which two versions of the
software were executed. In particular, the computer was disconnected from the In-
ternet while calculating. All the unnecessary processes were switched off, simulation
software was executed with the highest possible priority (”realtime”).

4. Results of numerical simulations

Firstly, the LLE values have been estimated for the system (7) in the range of control
parameter κ from 0.0 to 9.0 with the step of 0.01. The values of other parameters
have been assumed as follows: µ = 0.2, β = 1.0, τ = 2.0, q = 17.0, ω = 4.0. The
same numbers have been used in the reference [21]. The system has been run with
zero initial conditions. Components z1 and z2 of the initial perturbation z(0) have
been selected randomly in the range [0,1). Due to the assumption of the undisturbed
forcing phase, the third component of the initial perturbation has been set to 0. It
has been assumed that z = 0 and x = 0 for t < 0.
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The bifurcation diagram of the state variable x1 of the delayed van der Pol’s
equations (7) together with the corresponding graph of the LLE calculated using
the new method are depicted in the Fig. 1.

Figure 1 Bifurcation diagram and the LLE graph of the delayed van der Pol system (7)

Figure 2 Bifurcation diagram and the LLE graph of the forced van der Pol system (10)
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The Largest Lyapunov exponent for the forced van der Pol oscillator (10) has been
computed with the following parameters values: q = 1.2, ω = 2π

10 . The parameter
µ has been used as the control parameter in the range from 8.0 to 9.0 with the
step of 0.001. In the simulation, a unit random vector has been used as the initial
conditions. The initial perturbation has also been selected randomly and normalized
to 1.

The bifurcation diagram of the state variable x2 of the van der Pol oscillator (10)
together with the corresponding graph of the LLE is depicted in the Fig. 2. The
LLE graph obtained by means of the new method has been drawn with the solid
line, whereas values of the LLE calculated using the classical method are marked
with the dotted line. It can be noticed that both methods yield almost the same
results.

5. Computation time comparisons

Comparison of the computation time has been performed for the forced van der Pol
system (10) only. For each value of the control parameter µ, the time of the LLE
estimation has been measured from the beginning of calculations till the stabiliza-
tion of the LLE. Further on, for each µ, the ratio of the calculations time with the
new method to the calculations time with the classical method has been computed.
The average value of the ratio is approximately equal to 0.718 with the standard
deviation 0.005. This means that for the van der Pol oscillator, the new method is,
in the average, 28% faster than the classical one. To authors’ best knowledge, there
is no faster algorithm of the LLE estimation for continuous dynamical systems than
the one used for comparison. Therefore,authors claim that the method presented
in this paper is the fastest one in the assumed range of applications.

6. Conclusions

The first part of the experiment confirmed that the presented method of the LLE
estimation can be applied to systems with time delay. The results obtained by means
of the new method are coincident with values obtained from the synchronization
method [21]. Therefore, using the presented method, calculation of the LLE of the
systems with time delay can be significantly simplified.

The second part of the experiment showed that the presented method of the
LLE estimation is, in the average, 28% faster than the classical one for the van der
Pol oscillator. Therefore, to authors’ best knowledge, the presented method is the
fastest algorithm of the LLE estimation for continuous dynamical systems.

In the future it is planned to apply the method to calculations of the whole
Lyapunov Exponents spectrum and to adopt it to systems with discontinuities.
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