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We introduced the coupled theory, Lord–Schulman theory with one relaxation time and
Green-Lindsay theory with two relaxation times to study the influence of thermal load-
ing due to laser pulse on generalized micropolar thermoelasticity. The bounding plane
surface is heated by a non–Gaussian laser beam with the pulse duration of 8 ps. The
methodology applied here is the use of normal mode analysis to solve the problem of
thermal loading due to laser pulse to obtain the exact expressions for the displacement
components, force stresses, temperature, couple stresses and microrotation. The distri-
butions of the considered variables are illustrated graphically. Comparisons are made
with the results predicted by three theories in the presence of laser pulse and for different
values of time.
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1. Introduction

Eringen’s micropolar theory of elasticity [1] is now well known and does not need
much introduction and in this theory, a load across a surface element is transmitted
by a force vector along with a couple stress vector. The motion is characterized by
six degrees of freedom three of translation and three of the microrotation. Scar-
petta [2], Passarella [3] and Eringen [4] developed the linear theory of micropolar
elasticity. Tauchert et al. [5] also derived the basic equations of the linear theory
of micropolar thermoelasticity. Dost and Tabarrok [6] presented the micropolar
generalized thermoelasticity by using Green-Lindsay theory. Chandrasekhariah [7]
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formulated a theory of micropolar thermoelasticity which includes heat-flux among
the constitutive variables. Othman and Singh [8] studied the effect of rotation on
generalized micropolar thermoelasticity in a half-space under five theories. Oth-
man and Song [9] investigated the effect of thermal relaxation and magnetic field
on generalized micropolar thermoelastic medium.

A generalized theory of linear micropolar thermoelasticity that admits the pos-
sibility of “second sound” effects was established by Boschi and Iesan [10]. Kumar
and Singh [11] extended the micropolar thermoelasticity with stretch given by Erin-
gen [12]. Marin et al. [13] studied an extension of the domain of influence theorem
for anisotropic thermoelastic material with voids. Marin et al. [14] investigated the
localization in time of solutions for thermoelastic micropolar materials with voids.
Very rapid thermal processes under the action of an ultra-short laser pulse are inter-
esting from the standpoint of thermoelasticity since they require an analysis of the
coupled temperature and deformation fields. This means that the absorption of the
laser pulse energy results in a localized temperature increase, which in turn causes
thermal expansion and generates rapid movements in the structure elements, thus
causing the rise of vibrations. This mechanism has attracted considerable attention
due to the extensive application of pulsed laser technologies in material processing
and non-destructive detection and characterization. Due to the advancement of
pulsed lasers, fast burst nuclear reactors and particle accelerators, etc. which can
supply heat pulses with a very fast time rise by Bargmann [15] and Boley [16], gen-
eralized thermoelasticity theory is receiving serious attention. At present mainly
two different models of generalized thermo-elasticity are being extensively used one
proposed by Lord and Shulman [17] and the other proposed by Green and Lindsay
[18]. Lord and Shulman (L-S) theory suggests one relaxation time and according
to this theory, only Fourier’s heat conduction equation is modified; while (G-L)
theory suggests two relaxation times and both the energy equation and the equa-
tion of motion are modified. The so-called ultra-short lasers are those with the
pulse duration ranging from nanoseconds to Femto-seconds in general. In the case
of ultra-short-pulsed laser heating, the high-intensity energy flux and ultra-short
duration laser beam, have introduced situations where very large thermal gradients
or an ultra-high heating speed may exist on the boundaries by Hussain et al. [19].
Othman and Abd-Elaziz [20] studied the effect of thermal loading due to laser pulse
in generalized thermoelastic medium with voids in the dual-phase-lag model.

Othman, et al. [21] investigated the effect of magnetic field on a rotating thermo-
elastic medium with voids under thermal loading due to laser pulse with energy dissi-
pation. Othman and Edeeb [22] studied the 2-D problem of a rotating thermoelastic
solid with voids and thermal loading due to laser pulse under three theories. These
problems are based on the more realistic elastic model since earth; the moon and
other planets have angular velocity.

The present paper is motivated by micropolar theory given by Eringen [4]. Here,
the normal mode method is used to obtain the exact expressions for the considered
variables. The distributions of the considered variables are represented graphically.
Numerical results for the field quantities are given and illustrated graphically in the
presence of laser pulse and for different values of time.
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2. Formulation of the problem

We consider a homogeneous and micropolar thermoelastic half-space (z ≥ 0), the
rectangular Cartesian coordinate system (x, y, z) having originated on the surface
y = 0. All quantities considered are functions of the time tand the coordinates x
and z, u = (u, 0, w) is the dynamic displacement vector and the micro-rotation
vector is ϕ = (0, ϕ2, 0).

3. Basic equations

The system of governing equations of a linear micropolar thermoelasticity without
body forces and body couples consists of:
- Equation of motion:

σji,j = ρui, tt (1)

εijkσjk +mji,j = Jρϕi, tt (2)

– The constitutive laws:

σij = λur,rδij + µ(ui,j + uj,i) + k(uj,i − εijkϕk)− γ1(T + νT,t)δij (3)

mij = αϕr,rδij + β ϕi,j + γ ϕj,i (4)

– The heat conduction equation:

KT,jj = ρCE(1 + τ0
∂

∂t
)T,t + (1 + n0τ0

∂

∂t
)(T0γ1ui,it − ρQ) (5)

Where, λ, µ are Lamé constants, k, α, β, γ are micropolar constants, ρ is the density,
CE is the specific heat at constant strain, τ0, ν are the relaxation times, σij are
the components of stress, ui are the components of displacement vector, K is the
thermal conductivity, J is the current density vector, mij is the couple stress tensor,
εijk is the alternate tensor, T is the temperature distribution, T0 is the reference
temperature chosen so that |(T − T0)/T0| < 1, ϕ microrotation vector, δij is the
Kronecker delta, γ1 = (3λ + 2µ + k)αt, while αt is the linear thermal expansion
coefficient.
The laser pulse given by the heat input [19]:

Q = I0f(t)g(x)h(z) (6)

where, I0 is the energy absorbed, the temporal profile f(t) is represented as:

f(t) =
t

t20
exp(

− t

t0
) (7)

Here t0 is the pulse rise time.

g(x) =
1

2πr2
exp (

−x2

r2
) (8)

Where, r is the beam radius.

h(z) = γ∗ exp (−γ∗z) (9)
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From Eqs. (7–9) into Eq. (6),

Q =
I0γ

∗

2πr2t20
t exp(

−x2

r2
− t

t0
) exp(−γ∗z) (10)

The constitutive equations can be written as:

σxx = λe+ (2µ+ k)
∂u

∂x
− γ1(1 + ν

∂

∂t
)T (11)

σyy = λe− γ1(1 + ν
∂

∂t
)T (12)

σzz = λe+ (2µ+ k)
∂w

∂z
− γ1(1 + ν

∂

∂t
)T (13)

σxz = µ
∂u

∂z
+ (k + µ)

∂w

∂x
+ kϕ2 (14)

σzx = µ
∂w

∂x
+ (k + µ)

∂u

∂z
− kϕ2 (15)

mxy = γ
∂ϕ2
∂x

(16)

mzy = γ
∂ϕ2
∂z

(17)

4. Method of solution

From Eqs. (11–17) into Eqs. (1–5):

ρ
∂2u

∂t2
= (λ+ µ)

∂e

∂x
+ (µ+ k)∇2u− k

∂ϕ2
∂z

− γ1(1 + ν
∂

∂t
)
∂T

∂x
(18)

ρ
∂2w

∂t2
= (λ+ µ)

∂e

∂z
+ (µ+ k)∇2w + k

∂ϕ2
∂x

− γ1(1 + ν
∂

∂t
)
∂T

∂z
(19)

J ρ
∂2ϕ2
∂t2

= k (
∂u

∂z
− ∂w

∂x
) + γ∇2ϕ2 − 2kϕ2 (20)

K∇2T = ρCE(1 + τ0
∂

∂t
)
∂T

∂t
+ (1 + n0τ0

∂

∂t
)(T0γ1

∂e

∂t
− ρQ) (21)

For simplifications we shall use the following non-dimensional variables:

(x′, z′) =
η0
C0

(x, z) (u′, w′) =
ρη0C0

γ1T0
(u, w) (t′, τ ′0, ν

′) = η0 (t, τ0, ν)

θ′ =
T

T0
σij =

σij
γ1T0

ϕ′2 =
ρC2

0

γ1T0
ϕ (22)

m′
ij =

η0

C0γ1T0
mij Q′ =

γ21
ρC2

0

Q

where: η0 =
ρCEC2

0

K , γ1 = (3λ+ 2µ+ k)αt and C
2
0 = (λ+ 2µ+ k) /ρ.



The Effect of Heat Laser Pulse on Generalized Thermoelasticity ... 801

Eqs. (18–21) take the following form (dropping the dashes for convenience):

∂2u

∂t2
= (

λ+ µ

ρC2
0

)
∂e

∂x
+

(k + µ)

ρC2
0

∇2u− k

ρC2
0

∂ϕ2
∂z

− (1 + ν
∂

∂t
)
∂θ

∂x
(23)

∂2w

∂t2
= (

λ+ µ

ρC2
0

)
∂e

∂z
+ (

µ+ k

ρC2
0

)∇2w +
k

ρC2
0

∂ϕ2
∂x

− (1 + ν
∂

∂t
)
∂θ

∂z
(24)

JρC2
0

γ

∂2ϕ2
∂t2

= ∇2ϕ2 −
2kC2

0

γη0
ϕ2 +

kC2
0

γη20
(
∂u

∂z
− ∂w

∂x
) (25)

∇2θ = (1 + τ0
∂

∂t
)
∂θ

∂t
+ ε (1 + n0T0

∂

∂t
)
∂e

∂t
− Q0f

∗ exp (− γ∗z) (26)

where: ε =
γ2
1T0

ρKη0
, Q0 =

ρη2
0γ

∗I0
2πKT0a2t20

, f∗ = [1 + n0(τ0 − t)] exp(− t
t0

− x2

r2 ).

We introduce the displacement potentials q(x, z, t)and ψ(x, z, t) which related to
displacement components:

u =
∂q

∂x
+
∂ψ

∂z
, w =

∂q

∂z
− ∂ψ

∂x
, e = ∇2q,

∂u

∂z
− ∂w

∂x
= ∇2ψ (27)

The solution of the considered physical variable can be decomposed in terms of
normal modes as the following form:

[u,w, θ, ϕ2, q, ψ, σij ,mij ](x, z, t)

= [u∗, w∗, θ∗, ϕ∗2, q
∗, ψ∗, σ∗

ij ,m
∗
ij ](z) exp(bt+ iax) (28)

Using Eqs. (27, 28) into Eqs. (23–26):

(D2 − a1)q
∗ − a2θ

∗ = 0 (29)

(a3D
2 − a4)ψ

∗ − a5ϕ
∗
2 = 0 (30)

(D2 − a6)ϕ
∗
2 + a7(D

2 − a2)ψ∗ = 0 (31)

(D2 − a8)θ
∗ − a9(D

2 − a2)q∗ = − Q0 f exp(−γ∗z) (32)

where: D = d
dz , a1 = a2 + b2, a2 = 1 + νb, a3 = µ+k

ρC2
0
, a4 = a2a3 + b2, a5 = k

ρC2
0
,

a6 = a2 +
JρC2

0b
2

γ +
2kC2

0

γη0
, a7 =

kC2
0

γη2
0
, a8 = a2 + b + τ0b

2, a9 = ε(b + n0τ0b
2),

f = f∗ exp(− bt− iax).
Eliminating q∗ between Eqs. (29) and (32):

(D4 −AD2 +B )q∗(z) = − a2Q0f exp(− γ∗z) (33)

In similar manner we arrive at:

(D4 −AD2 +B )θ∗(z) = − Q0(γ
∗ − a1)f exp(− γ∗z) (34)

Eliminating ψ∗ and ϕ∗2 between Eqs. (30) and (31):

(D4 − C D2 + F )ψ∗(z) = 0 (35)
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(D4 − C D2 + F )ϕ∗2(z) = 0 (36)

where: A = a1+a8+a2a9, B = a1a8+a2a9a
2, C = a4+a3a6−a5a7

a3
, F = a4a6−a5a7a

2

a3
.

Eqs. (33, 34) can be factored as:

(D2 − k21)(D
2 − k22) q

∗(z) = − a2Q0f exp(− γ∗z) (37)

(D2 − k21)(D
2 − k22) θ

∗(z) = − Q0(γ
∗ − a1)f exp(− γ∗z) (38)

where: k2n (n = 1, 2) are the roots of the characteristic equation of Eqs. (33) and
(34).
Eqs. (35), (36) can be factored as:

(D2 − α2
1)(D

2 − α2
2) {ψ∗(z), ϕ∗2(z)} = 0 (39)

where, α2
s (s = 1, 2) are the roots of the characteristic equation of Eqs. (33) and

(34).
The general solution of Eqs. (33–36), bound as z → ∞, is given by:

q(x, z, t) =

2∑
n=1

Mn exp(−knz + bt+ iax) +Q0a2L1f
∗ exp(−γ∗z) (40)

θ(x, z, t) =
2∑

n=1

H1nMn exp(− knz + bt+ iax) +Q0(γ
∗ − a1)L1f

∗ exp(−γ∗z) (41)

ψ(x, z, t) =

2∑
n=1

Rn exp(− αnz + bt+ iax) (42)

ϕ2(x, z, t) =
2∑

n=1

H2nRn exp(− αnz + bt+ iax) (43)

where: L1 = −1
γ∗4−Aγ∗2+B , H1n =

k2
n−a1

a2
, H2n =

a3α
2
n−a4

a5
, n = 1, 2,

Eq. (27) together with Eqs. (40) and (42) give:

u(x, z, t) =
2∑

n=1

[iaMn exp(−knz)− αnRn exp(− αnz)] exp(bt+ iax)

−Q0L1a2(
2x

r2
) f∗ exp(− γ∗z) (44)

w(x, z, t) =
2∑

n=1

[−knMn exp(−knz)− iaRn exp(− αnz)] exp(bt+ iax)

−Q0L1a2 γ
∗f∗ exp(− γ∗z) (45)

Substituting from Eq. (22) in Eqs. (11–17) and with the help of Eqs. (41–45) we
obtain the components of stresses and tangential couple stress:

σxx(x, z, t) =
2∑

n=1

[H3nMn exp(−knz)−H4nRn exp(− αnz)] exp(bt+ iax)

+Q0(f1 − f2) exp(− γ∗z) (46)
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σyy(x, z, t) =
2∑

n=1

H5nMn exp(− knz + bt+ iax)

+Q0(f3 − f2) exp(− γ∗z) (47)

σzz(x, z, t) =

2∑
n=1

[H6nMn exp(−knz)−H4nRn exp(− αnz)] exp(bt+ iax)

+Q0(f4 − f2) exp(− γ∗z) (48)

σxz(x, z, t) =
2∑

n=1

[H7nMn exp(−knz) +H8nRn exp(−αnz)] exp(bt+ iax)

+Q0f5 exp(−γ∗z) (49)

σzx(x, z, t) =
2∑

n=1

[H9nMn exp(−knz) +H10nRn exp(− αnz)] exp(bt+ iax)

+Q0f5 exp(− γ∗z) (50)

mxy(x, z, t) =
2∑

n=1

i a γ η20
ρC4

0

H2nRn exp (− αnz) (51)

mzy(x, z, t) =

2∑
n=1

− γ η20
ρC4

0

αnH2nRn exp(− αnz) (52)

where: Mn and Rn(n = 1, 2) are some parameters and:

H3n = − a2 +
λ

ρC2
0

k2n −H1n + νbH1n H4n = i a αn(
λ

ρC2
0

− 1)

H5n =
λ

ρC2
0

(− a2 + k2n −H1n + νbH1n) H6n = k2n − λ

ρC2
0

a2 −H1n + νbH1n

H7n =
−ia
ρC2

0

[µkn + (µ+ k)] H8n =
1

ρC2
0

[µα2
n + a2(µ+ k) + kH2n]

H10n =
1

ρC2
0

[µa2 + α2
n(µ+ k)− kH2n]

f1 = L1f
∗[a2(

− 2

r2
+

4x2

r4
) +

λ

ρC2
0

a2γ
∗ − (γ∗ − a1)]

f2 = νL1(γ
∗ − a1)[n0 +

1 + n0(τ0 − t)

t0
] exp(

−x2

r2
− t

t0
)

f3 = L1f
∗[
λa2
ρC2

0

(
−2

r2
+

4x2

r4
) +

λ

ρC2
0

a2γ
∗ − (γ∗ − a1)]

f4 = L1f
∗[
λa2
ρC2

0

(
−2

r2
+

4x2

r4
) + a2γ

∗ − (γ∗ − a1)]

f5 =
a2γ

∗L1f
∗

ρC2
0

(
−2x

r2
)(k − 2µ)
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5. Boundary conditions

In order to determine the parameters Mn, Rn(n = 1, 2 ) we need to consider the
boundary condition at z = 0 as follows:
Thermal boundary condition:

∂θ

∂z
= p2 exp(bt+ iax) (53)

Mechanical boundary condition:

σxx = −p1 exp(bt+ iax), σxz = 0, mzy = 0 (54)

Substituting the expression of the variables considered into the above boundary
conditions, we can obtain the following equations satisfied by the parameters:

2∑
n=1

− knH1nMn = p2 (55)

2∑
n=1

(H3nMn +H4nRn) = −p1 (56)

2∑
n=1

(H7nMn +H8nRn) = 0 (57)

2∑
n=1

H2nRn = 0 (58)

Solving Eqs. (55–58) for Mn, Rn (n = 1, 2 ) by using the inverse of matrix method
as follows:

M1

M2

R1

R2

 =


−k1H11 − k2H12 0 0
H31 H32 H41 H42

H71 H72 H81 H82

0 0 − α1H13 − α2H14


−1 

p2
−p1
0
0

 (59)

6. Numerical results and discussions

The analysis is conducted for a magnesium crystal-like material. Following Othman
and Singh [8] the values of physical constants are:

T0 = 298K◦, λ = 9.4× 1010Nm−2, µ = 4.0× 1010Nm−2,

k = 1.0× 1010Nm−2, ρ = 1.74× 103 kg/m3, γ = 0.779× 10−9N,

J = 0.2×10−15m2, CE = 1.04×103 kg m−3, K = 1.7×102Jm−1s−1 deg−1,

αt = 7.4033×10−7K−1, b = b0+i ξ, b0 = 0.6, ξ = 0.1, p1 = 1, p2 = 1.

where: b0 is the complex time constant.
The laser pulse parameters are I0 = 107J, r = 100µm, γ∗ = 8m−1, t0 = 8 p. sec .
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The comparisons have established for two values of time (t = 0.1, 0.9) in the context
of the coupled theory (CD), (L-S) and (G-L) theories, on the surface plane x = 1.
The numerical technique outlined above is used for the distribution of the real part
of the non-dimensional displacements uand w, the non-dimensional temperature
θ, the distributions of non-dimensional stresses σxxand σxz, the non-dimensional
micro-rotation ϕ2 and the non-dimensional couple stress mxyfor the problem, the
results are shown in Figs. 1-7. The graphs show the six curves predicted by three
different theories of thermoelasticity. In this figure, the solid lines represent the
solution in the (CD) theory, the dashed lines represent the solution derived using
the (L-S) theory and the dotted lines represent the solution in the generalized (G-L)
theory.

Figure 1 Variation of thermal displacement u with horizontal distance z

In Fig. 1, the displacement component u is plotted against the distance z, it is
observed that the displacement u for (G-L) theory is greater than that of the (L-S)
theory and the (CD) theory. It is clear that the values of solutions for (t = 0.9)
are greater than that for (t = 0.1). Fig. 2 shows the distribution of displacement
components w in the context of the three theories; it noticed that the distribution
of w decreases with the increase of the distance z, and the values of solutions for
(t = 0.9) are greater than that for (t = 0.1). Fig. 3 explains the distribution of
temperature θ, against the distance z, this figure shows the similar behaviors as
those of figure 2. Fig. 4 explains the distribution of normal stress σxx against
the distance z, we see that the values of solutions for (t = 0.9) are smaller than
that for (t = 0.1) and the normal stress σxx for (G-L) theory is greater than that
of the (L-S) theory and the (CD) theory. Fig. 5 investigates the distribution of
tangential stress σxz versus the distance z. The values of σxz for (CD) theory are
small compared to those in the other theories. The values of σxz start from zero,
which agree with the boundary conditions.
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Figure 2 Variation of normal displacement w with horizontal distance z

Figure 3 Variation of conductive temperature θ with horizontal distance z

Fig. 6 depicts the variations of the normal micro-rotation ϕ2 against the distance
z, from this figure we see that the curves start from the same value at z = 0, the
values of solutions for (t = 0.1) are smaller than that for (t = 0.9). Fig. 7 exhibits
the values of tangential couple stress mxy against the distance z. It is clear that
the values of solutions for (CD) theory are large in comparison with those for (L-S)
and (G-L) theories. The values of solutions for (t = 0.9) are smaller than that for
(t = 0.1).
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Figure 4 Variation of normal stresses σxx with horizontal distance z

Figure 5 Variation of tangential stresses σxz with horizontal distance z

Figure 6 Variation of micro-rotation ϕ2 with horizontal distance z
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Figure 7 Variation of couple stress mxywith horizontal distance z

Figure 8 (3D) Horizontal component of displacement uagainst both components of distance based
on (CD) theory, in the presence of laser pulse

Figs. 8–10 are giving 3D surface curves for the physical quantities, i.e., the horizon-
tal displacement u and the tangential stress component σxzand the micro-rotation
component ϕ2 of the thermal shock problem in the presence of laser pulse at
(t = 0.1) in the context of the (CD) theory. These figures are very important
to study the dependence of these physical quantities on the vertical component of
distance. The curves obtained are highly depending on the vertical distance from
origin, all the physical quantities are moving in wave propagation.
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Figure 9 (3D) Distribution of stress component σxzagainst both components of distance based
on (CD) theory, in the presence of laser pulse

Figure 10 (3D) Distribution of micro-rotation ϕ2 against both components of distance based on
(CD) theory, in the presence of laser pulse

7. Conclusions

According to the above results, we can conclude that:

1. The time parameter t in the current model has significant effects on all the
fields.

2. The value of all physical quantities converges to zero with an increase in
distance z and all the functions are continuous.

3. The comparison of different theories of thermoelasticity, i.e. (CD), (L-S) and
(G-L) theories are carried out.

4. Analytical solutions based upon normal mode analysis for thermoelastic prob-
lem in solids have been developed and used.

5. The deformation of a body depends on the nature of the applied forces and
thermal loading due to laser pulse as well as the type of boundary conditions.
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